# AFFILIATED INSTITUTIONS

# ANNA UNIVERSITY, CHENNAI

# R - 2008

# B.E. MATERIALS SCIENCE AND ENGINEERING II TO VIII SEMESTERS CURRICULUM AND SYLLABI

# SEMESTER II

| SL.<br>No. | COURSE<br>CODE | COURSE TITLE                               | L | т | Р | С |
|------------|----------------|--------------------------------------------|---|---|---|---|
| THEOR      | Y              |                                            | 1 |   |   |   |
| 1.         | HS2161         | Technical English – II*                    | 3 | 1 | 0 | 4 |
| 2.         | MA2161         | Mathematics – II*                          | 3 | 1 | 0 | 4 |
| 3.         | PH2161         | Engineering Physics – II*                  | 3 | 0 | 0 | 3 |
| 4.         | CY2161         | Engineering Chemistry – II*                | 3 | 0 | 0 | 3 |
| 5. a       | ME2151         | Engineering Mechanics                      | 3 | 1 | 0 | 4 |
|            |                | (For non-circuit branches)                 |   |   |   |   |
| 5. b       | EE2151         | Circuit Theory                             | 3 | 1 | 0 | 4 |
|            |                | (For branches under Electrical Faculty)    |   |   |   |   |
| 5. c       | EC2151         | Electric Circuits and Electron Devices     | 3 | 1 | 0 | 4 |
|            |                | (For branches under I & C Faculty)         |   |   |   |   |
| 6. a       | GE2151         | Basic Electrical & Electronics Engineering | 4 | 0 | 0 | 4 |
|            |                | (For non-circuit branches)                 |   |   |   |   |
| 6. b       | GE2152         | Basic Civil & Mechanical Engineering       | 4 | 0 | 0 | 4 |
|            |                | (For circuit branches)                     |   |   |   |   |
| PRACT      | ICAL           |                                            |   |   |   |   |
| 7.         | GE2155         | Computer Practice Laboratory-II*           | 0 | 1 | 2 | 2 |
| 8.         | GS2165         | Physics & Chemistry Laboratory - II*       | 0 | 0 | 3 | 2 |
| 9. a       | ME2155         | Computer Aided Drafting and Modeling       | 0 | 1 | 2 | 2 |
|            |                | (For non-circuits branches)                |   |   |   |   |

|     |   | <u>Circuits and Devices Laboratory</u><br>(For branches under I & C Faculty) |         |                |        | DITO |
|-----|---|------------------------------------------------------------------------------|---------|----------------|--------|------|
| 10. | - | English Language Laboratory                                                  | то<br>0 | <b>TAL</b> : 2 | 28 CRE |      |

# \* Common to all B.E. / B.Tech. Programmes

+ Offering English Language Laboratory as an additional subject (with no marks) during 2<sup>nd</sup> semester may be decided by the respective Colleges affiliated to Anna University Chennai.

# A. CIRCUIT BRANCHES

# I Faculty of Electrical Engineering

- 1. B.E. Electrical and Electronics Engineering
- 2. B.E. Electronics and Instrumentation Engineering
- 3. B.E. Instrumentation and Control Engineering

# II Faculty of Information and Communication Engineering

- 1. B.E. Computer Science and Engineering
- 2. B.E. Electronics and Communication Engineering
- 3. B.E. Bio Medical Engineering
- 4. B.Tech. Information Technology

# B. NON – CIRCUIT BRANCHES

# I Faculty of Civil Engineering

1. B.E. Civil Engineering

# II Faculty of Mechanical Engineering

- 1. B.E. Aeronautical Engineering
- 2. B.E. Automobile Engineering
- 3. B.E. Marine Engineering
- 4. B.E. Mechanical Engineering
- 5. B.E. Production Engineering

#### III Faculty of Technology

- 1. B.Tech. Chemical Engineering

- B.Tech. Biotechnology
   B.Tech. Polymer Technology
   B.Tech. Textile Technology
   B.Tech. Textile Technology (Fashion Technology)
- 6. B.Tech. Petroleum Engineering

# **SEMESTER – III**

| CODE NO.  | COURSE TITLE                                 | L  | Т | Ρ | С  |
|-----------|----------------------------------------------|----|---|---|----|
| THEORY    |                                              |    |   |   |    |
| MA 2211   | Transforms and Partial Differential Equation | 3  | 1 | 0 | 4  |
| ML3202    | Foundry and Machining Processes              | 3  | 0 | 0 | 3  |
| ML3203    | Thermodynamics and Kinetics of Materials     | 3  | 1 | 0 | 4  |
| CE3205    | Strength and Testing of Materials            | 3  | 1 | 0 | 4  |
| ML3205    | Materials Structure and Properties           | 3  | 0 | 0 | 3  |
| ME3206    | Metrology and Measurements                   | 3  | 0 | 0 | 3  |
| PRACTICAL |                                              |    |   |   |    |
| CE3207    | Strength of Materials Laboratory             | 0  | 0 | 3 | 2  |
| ML3208    | Microstructure Analysis Laboratory           | 0  | 0 | 3 | 2  |
|           | TOTAL                                        | 18 | 3 | 6 | 25 |

### **SEMESTER – IV**

| CODE NO.  | COURSE TITLE                         | L  | Т | Ρ | С  |
|-----------|--------------------------------------|----|---|---|----|
| THEORY    |                                      |    |   |   |    |
| ML3209    | Mechanical Metallurgy                | 3  | 1 | 0 | 4  |
| ML3210    | Primary Processing of Iron and Steel | 3  | 0 | 0 | 3  |
| ML3211    | Non-Ferrous Metallurgy               | 3  | 0 | 0 | 3  |
| ML3212    | Powder Metallurgy                    | 3  | 0 | 0 | 3  |
| ML3213    | Solid State Physics                  | 3  | 1 | 0 | 4  |
| ML3214    | Polymer Process Engineering          | 3  | 0 | 0 | 3  |
| PRACTICAL |                                      |    |   |   |    |
| ML 3217   | Metrology and Measurements Lab       | 0  | 0 | 3 | 2  |
| ML3216    | Manufacturing Technology Laboratory  | 0  | 0 | 3 | 2  |
|           | TOTAL                                | 18 | 2 | 6 | 24 |

# SEMESTER – V

| CODE NO.  | COURSE TITLE                              |       | L  | Т | Ρ | С  |
|-----------|-------------------------------------------|-------|----|---|---|----|
| THEORY    |                                           |       |    |   |   |    |
| ML3301    | Theory and Applications of Metal Forming  |       | 3  | 1 | 0 | 4  |
| ML3302    | Materials Aspects in Design               |       | 3  | 1 | 0 | 4  |
| ML3303    | Characterization of Materials             |       | 3  | 0 | 0 | 3  |
| ML3304    | Heat Treatment of Metals and Alloys       |       | 3  | 0 | 0 | 3  |
| ML3305    | Introduction to Nanotechnology            |       | 3  | 0 | 0 | 3  |
| ML3306    | Corrosion and Surface Engineering         |       | 3  | 0 | 0 | 3  |
| PRACTICAL |                                           |       |    |   |   |    |
| ML3307    | Heat Treatment Laboratory                 |       | 0  | 0 | 3 | 2  |
| ML3308    | Materials Processing Laboratory           |       | 0  | 0 | 3 | 2  |
| ML3309    | Presentation Skills and Technical Seminar |       | 0  | 0 | 2 | 1  |
|           |                                           | TOTAL | 18 | 2 | 8 | 25 |

# SEMESTER - VI

| CODE NO.  | COURSE TITLE                                   | L  | Т | Ρ  | С  |
|-----------|------------------------------------------------|----|---|----|----|
| THEORY    |                                                |    |   |    |    |
| ML3310    | Bio and Smart Materials                        | 3  | 0 | 0  | 3  |
| ML3311    | Creep and Fatigue Behavior of Materials        | 3  | 1 | 0  | 4  |
| ML3312    | Finite Element Analysis                        | 3  | 1 | 0  | 4  |
| ML3313    | Composite Materials                            | 3  | 0 | 0  | 3  |
| MG3314    | Industrial Management                          | 3  | 0 | 0  | 3  |
|           | Elective – I                                   | 3  | 0 | 0  | 3  |
| PRACTICAL | -                                              |    |   |    |    |
| ML3315    | Composite Materials Laboratory                 | 0  | 0 | 3  | 2  |
| GE3318    | Communication Skills Laboratory                | 0  | 0 | 4  | 2  |
| ML3317    | Advanced Materials Characterization Laboratory | 0  | 0 | 3  | 2  |
|           | TOTAL                                          | 18 | 2 | 10 | 25 |

# SEMESTER – VII

| CODE NO.  | COURSE TITLE                               | L  | Т | Ρ | С  |
|-----------|--------------------------------------------|----|---|---|----|
| THEORY    |                                            |    |   |   |    |
| GE2022    | Total Quality Management                   | 3  | 0 | 0 | 3  |
| ML3402    | Computer Applications in Materials Science | 3  | 1 | 0 | 4  |
| ML3403    | Non Destructive Materials Evaluation       | 3  | 0 | 0 | 3  |
| ML3404    | Welding Metallurgy                         | 3  | 0 | 0 | 3  |
|           | Elective – II                              | 3  | 0 | 0 | 3  |
|           | Elective – III                             | 3  | 0 | 0 | 3  |
| PRACTICAL |                                            |    |   |   |    |
| ME3405    | Computer Aided Simulation and Analysis     | 0  | 0 | 3 | 2  |
|           | Laboratory                                 |    |   |   |    |
| ML3406    | Comprehension                              | 0  | 0 | 2 | 1  |
| ML3407    | Material Design Project                    | 0  | 0 | 4 | 2  |
| ML3408    | Industrial/ Field Training*                | 0  | 0 | 0 | 1  |
|           | TOTAL                                      | 18 | 1 | 9 | 25 |

\*Four weeks industrial training during sixth semester holidays

# SEMESTER – VIII

| CODE NO.  | COURSE TITLE  | L | Т | Ρ  | С  |
|-----------|---------------|---|---|----|----|
| THEORY    |               |   |   |    |    |
|           | Elective – IV | 3 | 0 | 0  | 3  |
|           | Elective – V  | 3 | 0 | 0  | 3  |
| PRACTICAL | -             |   |   |    |    |
| ML3409    | Project Work  | 0 | 0 | 12 | 6  |
|           | TOTAL         | 6 | 0 | 12 | 12 |

# TOTAL CREDIT: 188

# LIST OF ELECTIVES FOR B.E MATERIALS SCIENCE AND ENGINEERING

#### CODE NO COURSE TITLE L Т Ρ С Metallurgy of Tool Materials ML3001 3 0 0 3 Physical Metallurgy of Ferrous and Aluminum ML3002 3 0 0 3 Alloys MA2264 Numerical Methods 3 1 0 4 Principles of Metal Cutting ML3020 3 0 0 3 GE2025 Professional Ethics in Engineering 3 0 0 3 MF3304 Computer Aided Design 3 0 0 3

# ELECTIVE – I

# ELECTIVE – II

| CODE NO | COURSE TITLE                                    | L | Т | Ρ | С |
|---------|-------------------------------------------------|---|---|---|---|
| ML3003  | Automotive Materials                            | 3 | 0 | 0 | 3 |
| ML3004  | Biomedical Materials                            | 3 | 0 | 0 | 3 |
| ML3006  | Electron Microscopy and Diffraction Analysis of | 3 | 0 | 0 | 3 |
|         | Materials                                       |   |   |   | 1 |
| ML3010  | Fuels, Furnaces and Refractories                | 3 | 0 | 0 | 3 |
| ME2024  | Industrial Tribology                            | 3 | 0 | 0 | 3 |

### ELECTIVE - III

| CODE NO | COURSE TITLE                                     | L | Т | Ρ | С |
|---------|--------------------------------------------------|---|---|---|---|
| ML3013  | Micro and Nanomechanical Properties of Materials | 3 | 0 | 0 | 3 |
| ML3014  | Alloy Casting Processes                          | 3 | 0 | 0 | 3 |
| ML3015  | Rolling and Forging Technology                   | 3 | 0 | 0 | 3 |
| ME3016  | Micro Machining Processes                        | 3 | 0 | 0 | 3 |
| ML3005  | Ceramics and Refractory Materials                | 3 | 0 | 0 | 3 |

# **ELECTIVE – IV**

| CODE NO | COURSE TITLE                         | L | Т | Ρ | С |
|---------|--------------------------------------|---|---|---|---|
| ML3009  | Experimental Techniques in Machining | 3 | 0 | 0 | 3 |
| ML3011  | Experimental Stress Analysis         | 3 | 0 | 0 | 3 |
| ML3017  | Laser Processing of Materials        | 3 | 0 | 0 | 3 |
| ML3018  | Cryogenic Treatment of Materials     | 3 | 0 | 0 | 3 |
| ML3019  | Materials Handling Systems           | 3 | 0 | 0 | 3 |

# ELECTIVE – V

| CODE NO. | COURSE TITLE                                     | L | Т | Ρ | С |
|----------|--------------------------------------------------|---|---|---|---|
| ML3007   | Modeling and Simulation in Materials Engineering | 3 | 0 | 0 | 3 |
| ML3023   | Polymer Rheology                                 | 3 | 0 | 0 | 3 |
| ML3024   | Fracture Mechanics and Failure Analysis          | 3 | 0 | 0 | 3 |
| ME2032   | Computational Fluid Dynamics                     | 3 | 0 | 0 | 3 |
| IE3401   | Design of Experiments                            | 3 | 1 | 0 | 4 |

| HS2161 | <b>TECHNICAL ENGLISH II</b> | LT P C  |
|--------|-----------------------------|---------|
|        |                             | 3 1 0 4 |

### AIM:

To encourage students to actively involve in participative learning of English and to help them acquire Communication Skills.

# **OBJECTIVES:**

- To help students develop listening skills for academic and professional purposes.
- To help students acquire the ability to speak effectively in English in real-life situations.
- To inculcate reading habit and to develop effective reading skills.
- To help students improve their active and passive vocabulary. •
- To familiarize students with different rhetorical functions of scientific English.
- To enable students write letters and reports effectively in formal and business situations.

### UNIT I

12 Technical Vocabulary - meanings in context, sequencing words, Articles- Prepositions, intensive reading predicting content, Reading and interpretation, extended definitions, Process description

# Suggested activities:

- 1. Exercises on word formation using the prefix 'self' Gap filling with preposition.
- 2. Exercises Using sequence words.
- 3. Reading comprehension exercise with questions based on inference Reading headings
- 4. and predicting the content Reading advertisements and interpretation.
- 5. Writing extended definitions Writing descriptions of processes Writing paragraphs based on discussions – Writing paragraphs describing the future.

# UNIT II

Phrases / Structures indicating use / purpose – Adverbs-Skimming – Non-verbal communication - Listening – correlating verbal and non-verbal communication -Speaking in group discussions – Formal Letter writing – Writing analytical paragraphs.

# Suggested activities:

- Reading comprehension exercises with questions on overall content Discussions analyzing stylistic features (creative and factual description) - Reading comprehension exercises with texts including graphic communication - Exercises in interpreting non-verbal communication.
- 2. Listening comprehension exercises to categorise data in tables.
- 3. Writing formal letters, quotations, clarification, complaint Letter seeking permission for Industrial visits– Writing analytical paragraphs on different debatable issues.

# UNIT III

12

12

Cause and effect expressions – Different grammatical forms of the same word -Speaking – stress and intonation, Group Discussions - Reading – Critical reading -Listening, - Writing – using connectives, report writing – types, structure, data collection, content, form, recommendations.

# Suggested activities:

- 1. Exercises combining sentences using cause and effect expressions Gap filling exercises using the appropriate tense forms Making sentences using different grammatical forms of the same word. (Eg: object –verb / object noun)
- Speaking exercises involving the use of stress and intonation Group discussions– analysis of problems and offering solutions.
- 3. Reading comprehension exercises with critical questions, Multiple choice question.
- 4. Sequencing of jumbled sentences using connectives Writing different types of reports like industrial accident report and survey report Writing recommendations.

# UNIT IV

Numerical adjectives – Oral instructions – Descriptive writing – Argumentative paragraphs – Letter of application - content, format (CV / Bio-data) - Instructions, imperative forms - Checklists, Yes/No question form – E-mail communication.

# Suggested Activities:

- 1. Rewriting exercises using numerical adjectives.
- 2. Reading comprehension exercises with analytical questions on content Evaluation of content.
- 3. Listening comprehension entering information in tabular form, intensive listening exercise and completing the steps of a process.
- 4. Speaking Role play group discussions Activities giving oral instructions.
- 5. Writing descriptions, expanding hints Writing argumentative paragraphs Writing formal letters Writing letter of application with CV/Bio-data Writing general and safety instructions Preparing checklists Writing e-mail messages.

# UNIT V

9

12

Speaking - Discussion of Problems and solutions - Creative and critical thinking – Writing an essay, Writing a proposal.

# Suggested Activities:

1. Case Studies on problems and solutions

4. Writing short proposals of 2 pages for starting a project, solving problems,

2. Brain storming and discussion

5. Writing advertisements.

3. Writing Critical essays

#### TEXT BOOK:

etc.

1. Chapters 5 – 8. Department of Humanities & Social Sciences, Anna University, 'English for Engineers and Technologists' Combined Edition (Volumes 1 & 2), Chennai: Orient Longman Pvt. Ltd., 2006. Themes 5 - 8 (Technology, Communication, Environment, Industry)

## **REFERENCES:**

- 1. P. K. Dutt, G. Rajeevan and C.L.N Prakash, 'A Course in Communication Skills', Cambridge University Press, India 2007.
- 2. Krishna Mohan and Meera Banerjee, 'Developing Communication Skills', Macmillan India Ltd., (Reprinted 1994 – 2007).
- 3. Edgar Thorpe, Showick Thorpe, 'Objective English', Second Edition, Pearson Education, 2007.

### EXTENSIVE READING:

1. Robin Sharma, 'The Monk Who Sold His Ferrari', Jaico Publishing House, 2007

#### NOTE:

The book listed under Extensive Reading is meant for inculcating the reading habit of the students. They need not be used for testing purposes.

#### MA2161 MATHEMATICS – II LT PC 3 1 0 4

#### UNIT I **ORDINARY DIFFERENTIAL EQUATIONS**

Higher order linear differential equations with constant coefficients - Method of variation of parameters - Cauchy's and Legendre's linear equations - Simultaneous first order linear equations with constant coefficients.

#### UNIT II **VECTOR CALCULUS**

Gradient Divergence and Curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem in a plane, Gauss divergence theorem and stokes' theorem (excluding proofs) - Simple applications involving cubes and rectangular parallelpipeds.

#### UNIT III **ANALYTIC FUNCTIONS**

Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy – Riemann equation and Sufficient conditions (excluding proofs) - Harmonic and orthogonal properties of analytic function - Harmonic conjugate - Construction of analytic functions – Conformal mapping : w = z + c, cz, 1/z, and bilinear transformation.

#### UNIT IV **COMPLEX INTEGRATION**

Complex integration - Statement and applications of Cauchy's integral theorem and Cauchy's integral formula – Taylor and Laurent expansions – Singular points – Residues

8

### 12

12

**TOTAL: 60 PERIODS** 

# 12

 Residue theorem – Application of residue theorem to evaluate real integrals – Unit circle and semi-circular contour(excluding poles on boundaries).

# UNIT V LAPLACE TRANSFORM

Laplace transform – Conditions for existence – Transform of elementary functions – Basic properties – Transform of derivatives and integrals – Transform of unit step function and impulse functions – Transform of periodic functions.

Definition of Inverse Laplace transform as contour integral – Convolution theorem (excluding proof) – Initial and Final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

# TOTAL: 60 PERIODS

# TEXT BOOKS:

- 1. Bali N. P and Manish Goyal, "Text book of Engineering Mathematics", 3<sup>rd</sup> Edition, Laxmi Publications (p) Ltd., (2008).
- 2. Grewal. B.S, "Higher Engineering Mathematics", 40<sup>th</sup> Edition, Khanna Publications, Delhi, (2007).

### **REFERENCES**:

PH2161

- 1. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2007).
- 2. Glyn James, "Advanced Engineering Mathematics", 3<sup>rd</sup> Edition, Pearson Education, (2007).
- 3. Erwin Kreyszig, "Advanced Engineering Mathematics", 7<sup>th</sup> Edition, Wiley India, (2007).
- 4. Jain R.K and Iyengar S.R.K, "Advanced Engineering Mathematics", 3<sup>rd</sup> Edition, Narosa Publishing House Pvt. Ltd., (2007).

### UNIT I CONDUCTING MATERIALS

Conductors – classical free electron theory of metals – Electrical and thermal conductivity – Wiedemann – Franz law – Lorentz number – Draw backs of classical theory – Quantum theory – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

ENGINEERING PHYSICS – II

### UNIT II SEMICONDUCTING MATERIALS

Intrinsic semiconductor – carrier concentration derivation – Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – extrinsic semiconductors – carrier concentration derivation in n-type and p-type semiconductor – variation of Fermi level with temperature and impurity concentration – compound semiconductors – Hall effect –Determination of Hall coefficient – Applications.

# UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS

Origin of magnetic moment – Bohr magneton – Dia and para magnetism – Ferro magnetism – Domain theory – Hysteresis – soft and hard magnetic materials – anti –

### 9

LT P C 3 0 0 3

# 9

9

ferromagnetic materials – Ferrites – applications – magnetic recording and readout – storage of magnetic data – tapes, floppy and magnetic disc drives.

Superconductivity : properties - Types of super conductors – BCS theory of superconductivity(Qualitative) - High Tc superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

# UNIT IV DIELECTRIC MATERIALS

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarization – frequency and temperature dependence of polarisation – internal field – Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials (capacitor and transformer) – ferroelectricity and applications.

# UNIT V MODERN ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications.

Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, advantages and disadvantages of SMA

Nanomaterials: synthesis –plasma arcing – chemical vapour deposition – sol-gels – electrodeposition – ball milling - properties of nanoparticles and applications.

Carbon nanotubes: fabrication – arc method – pulsed laser deposition – chemical vapour deposition - structure – properties and applications.

## **TOTAL: 45 PERIODS**

# TEXT BOOKS:

- 1. Charles Kittel ' Introduction to Solid State Physics', John Wiley & sons, 7<sup>th</sup> edition, Singapore (2007)
- 2. Charles P. Poole and Frank J.Ownen, 'Introduction to Nanotechnology', Wiley India(2007) (for Unit V)

# **REFERENCES:**

- 1. Rajendran, V, and Marikani A, 'Materials science'Tata McGraw Hill publications, (2004) New delhi.
- 2. Jayakumar, S. 'Materials science', R.K. Publishers, Coimbatore, (2008).
- 3. Palanisamy P.K, 'Materials science', Scitech publications(India) Pvt. LTd., Chennai, second Edition(2007)
- 4. M. Arumugam, 'Materials Science' Anuradha publications, Kumbakonam, (2006).

| CY2161 | ENGINEERING CHEMISTRY – II | LTPC |
|--------|----------------------------|------|
|        |                            | 3003 |

# AIM

To impart a sound knowledge on the principles of chemistry involving the different application oriented topics required for all engineering branches.

# OBJECTIVES

- The student should be conversant with the principles electrochemistry, electrochemical cells, emf and applications of emf measurements.
- Principles of corrosion control
- Chemistry of Fuels and combustion
- Industrial importance of Phase rule and alloys
- Analytical techniques and their importance.

#### **ELECTROCHEMISTRY** UNIT I

Electrochemical cells – reversible and irreversible cells – EMF – measurement of emf – Single electrode potential - Nernst equation (problem) - reference electrodes - Standard Hydrogen electrode - Calomel electrode - Ion selective electrode - glass electrode and measurement of pH – electrochemical series – significance – potentiometer titrations (redox -  $Fe^{2^{+}}$  vs dichromate and precipitation – Ag<sup>+</sup> vs Cl<sup>-</sup> titrations) and conduct metric titrations (acid-base – HCI vs, NaOH) titrations,

#### UNIT II **CORROSION AND CORROSION CONTROL**

Chemical corrosion - Pilling - Bedworth rule - electrochemical corrosion - different types – galvanic corrosion – differential aeration corrosion – factors influencing corrosion - corrosion control - sacrificial anode and impressed cathodic current methods corrosion inhibitors - protective coatings - paints - constituents and functions - metallic coatings – electroplating (Au) and electroless (Ni) plating.

#### UNIT III **FUELS AND COMBUSTION**

Calorific value - classification - Coal - proximate and ultimate analysis metallurgical coke - manufacture by Otto-Hoffmann method - Petroleum processing and fractions cracking - catalytic cracking and methods-knocking - octane number and cetane number - synthetic petrol - Fischer Tropsch and Bergius processes - Gaseous fuelswater gas, producer gas, CNG and LPG, Flue gas analysis - Orsat apparatus theoretical air for combustion.

#### UNIT IV PHASE RULE AND ALLOYS

Statement and explanation of terms involved - one component system - water system condensed phase rule - construction of phase diagram by thermal analysis - simple eutectic systems (lead-silver system only) - alloys - importance, ferrous alloys nichrome and stainless steel - heat treatment of steel, non-ferrous alloys - brass and bronze.

#### UNIT V ANALYTICAL TECHNIQUES

Beer-Lambert's law (problem) - UV-visible spectroscopy and IR spectroscopy principles - instrumentation (problem) (block diagram only) - estimation of iron by colorimetry – flame photometry – principle – instrumentation (block diagram only) – estimation of sodium by flame photometry – atomic absorption spectroscopy – principles - instrumentation (block diagram only) - estimation of nickel by atomic absorption spectroscopy.

# TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S.Dara "A text book of Engineering Chemistry" S.Chand & Co.Ltd., New Delhi (2006).

# **REFERENCES:**

- 1. B.Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).
- 2. B.K.Sharma "Engineering Chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).

9

9

# **TOTAL: 45 PERIODS**

9

9

At the end of this course the student should be able to understand the vectorial and scalar representation of forces and moments, static equilibrium of particles and rigid bodies both in two dimensions and also in three dimensions. Further, he should understand the principle of work and energy. He should be able to comprehend the effect of friction on equilibrium. He should be able to understand the laws of motion, the kinematics of motion and the interrelationship. He should also be able to write the dynamic equilibrium equation. All these should be achieved both conceptually and through solved examples.

# UNIT I BASICS & STATICS OF PARTICLES

Introduction – Units and Dimensions – Laws of Mechanics – Lame's theorem, Parallelogram and triangular Law of forces – Vectors – Vectorial representation of forces and moments – Vector operations: additions, subtraction, dot product, cross product – Coplanar Forces – Resolution and Composition of forces – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility – Single equivalent force.

## UNIT II EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports and their reactions – requirements of stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions – Examples

# UNIT III PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes – First moment of area and the Centroid of sections – Rectangle, circle, triangle from integration – T section, I section, - Angle section, Hollow section by using standard formula – second and product moments of plane area – Rectangle, triangle, circle from integration – T section, I section, Angle section, Hollow section by using standard formula – Parallel axis theorem and perpendicular axis theorem – Polar moment of inertia – Principal moments of inertia of plane areas – Principal axes of inertia – Mass moment of inertia – Derivation of mass moment of inertia for rectangular section, prism, sphere from first principle – Relation to area moments of inertia.

# UNIT IV DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion – Newton's law – Work Energy Equation of particles – Impulse and Momentum – Impact of elastic bodies.

# UNIT V FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Frictional force – Laws of Coloumb friction – simple contact friction – Rolling resistance – Belt friction.

Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion.

# **TOTAL: 60 PERIODS**

# TEXT BOOK:

1. Beer, F.P and Johnson Jr. E.R. "Vector Mechanics for Engineers", Vol. 1 Statics and Vol. 2 Dynamics, McGraw-Hill International Edition, (1997).

12

12

12

12

#### Palanichamy, M.S., Nagam, S., "Engineering Mechanics – Statics & Dynamics", Tata McGraw-Hill, (2001).

Education Asia Pvt. Ltd., (2000).

**REFERENCES:** 

# 4. Irving H. Shames, "Engineering Mechanics – Statics and Dynamics", IV Edition – Pearson Education Asia Pvt. Ltd., (2003).

1. Rajasekaran, S. Sankarasubramanian, G., "Fundamentals of Engineering

2. Hibbeller, R.C., "Engineering Mechanics", Vol. 1 Statics, Vol. 2 Dynamics, Pearson

Mechanics", Vikas Publishing House Pvt. Ltd., (2000).

5. Ashok Gupta, "Interactive Engineering Mechanics – Statics – A Virtual Tutor (CDROM)", Pearson Education Asia Pvt., Ltd., (2002).

# EE2151CIRCUIT THEORY<br/>(Common to EEE, EIE and ICE Branches)L T P C<br/>3 1 0 4

### UNIT I BASIC CIRCUITS ANALYSIS

Ohm's Law – Kirchoffs laws – DC and AC Circuits – Resistors in series and parallel circuits – Mesh current and node voltage method of analysis for D.C and A.C. circuits.

# UNIT II NETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND AC CIRCUITS: 12

Network reduction: voltage and current division, source transformation - star delta conversion.

Thevenins and Novton & Theorem – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem.

#### UNIT III RESONANCE AND COUPLED CIRCUITS

Series and paralled resonance – their frequency response – Quality factor and Bandwidth - Self and mutual inductance – Coefficient of coupling – Tuned circuits – Single tuned circuits.

#### UNIT IV TRANSIENT RESPONSE FOR DC CIRCUITS

Transient response of RL, RC and RLC Circuits using Laplace transform for DC input and A.C. with sinusoidal input.

### UNIT V ANALYSING THREE PHASE CIRCUITS

Three phase balanced / unbalanced voltage sources – analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced & un balanced – phasor diagram of voltages and currents – power and power factor measurements in three phase circuits.

### TOTAL: 60 PERIODS

# TEXT BOOKS:

- 1. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", Tata McGraw Hill publishers, 6<sup>th</sup> edition, New Delhi, (2002).
- 2. Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", Tata McGraw Hill, (2007).

12

#### 12 allel

12

# **REFERENCES:**

- 1. Paranjothi SR, "Electric Circuits Analysis," New Age International Ltd., New Delhi, (1996).
- 2. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Tata McGraw-Hill, New Delhi (2001).
- 3. Chakrabati A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, New Delhi. (1999).
- 4. Charles K. Alexander, Mathew N.O. Sadik, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, (2003).

#### EC2151 ELECTRIC CIRCUITS AND ELECTRON DEVICES LTPC

(For ECE, CSE, IT and Biomedical Engg. Branches) 3104

#### **CIRCUIT ANALYSIS TECHNIQUES** UNIT I

Kirchoff's current and voltage laws - series and parallel connection of independent sources - R, L and C - Network Theorems - Thevenin, Superposition, Norton, Maximum power transfer and duality – Star-delta conversion.

#### UNIT II TRANSIENT RESONANCE IN RLC CIRCUITS 12

Basic RL, RC and RLC circuits and their responses to pulse and sinusoidal inputs frequency response - Parallel and series resonances - Q factor - single tuned and double tuned circuits.

#### SEMICONDUCTOR DIODES UNIT III

Review of intrinsic & extrinsic semiconductors – Theory of PN junction diode – Energy band structure - current equation - space charge and diffusion capacitances - effect of temperature and breakdown mechanism - Zener diode and its characteristics.

#### UNIT IV TRANSISTORS

Principle of operation of PNP and NPN transistors - study of CE, CB and CC configurations and comparison of their characteristics - Breakdown in transistors operation and comparison of N-Channel and P-Channel JFET – drain current equation – MOSFET – Enhancement and depletion types – structure and operation – comparison of BJT with MOSFET - thermal effect on MOSFET.

#### UNIT V SPECIAL SEMICONDUCTOR DEVICES (Qualitative Treatment only) 12

Tunnel diodes - PIN diode, varactor diode - SCR characteristics and two transistor equivalent model - UJT - Diac and Triac - Laser, CCD, Photodiode, Phototransistor, Photoconductive and Photovoltaic cells – LED, LCD.

# TOTAL: 60 PERIODS

# **TEXT BOOKS:**

- 1. Joseph A. Edminister, Mahmood, Nahri, "Electric Circuits" Shaum series, Tata McGraw Hill, (2001)
- 2. S. Salivahanan, N. Suresh kumar and A. Vallavanraj, "Electronic Devices and Circuits", Tata McGraw Hill, 2<sup>nd</sup> Edition, (2008).
- 3. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5<sup>th</sup> Edition, (2008).

12

12

15

# TEXT BOOKS:

1. V.N. Mittle "Basic Electrical Engineering", Tata McGraw Hill Edition, New Delhi, 1990.

2. R.S. Sedha, "Applied Electronics" S. Chand & Co., 2006.

# **REFERENCES:**

- 1. Robert T. Paynter, "Introducing Electronics Devices and Circuits", Pearson Education, 7<sup>th</sup> Education, (2006).
- 2. William H. Hayt, J.V. Jack, E. Kemmebly and steven M. Durbin, "Engineering Circuit Analysis", Tata McGraw Hill, 6<sup>th</sup> Edition, 2002.
- 3. J. Millman & Halkins, Satyebranta Jit, "Electronic Devices & Circuits", Tata McGraw Hill, 2<sup>nd</sup> Edition, 2008.

# GE2151 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING L T P C

(Common to branches under Civil, Mechanical and Technology faculty) 4004

# UNIT I ELECTRICAL CIRCUITS & MEASURMENTS

Ohm's Law – Kirchoff's Laws – Steady State Solution of DC Circuits – Introduction to AC Circuits – Waveforms and RMS Value – Power and Power factor – Single Phase and Three Phase Balanced Circuits.

Operating Principles of Moving Coil and Moving Iron Instruments (Ammeters and Voltmeters), Dynamometer type Watt meters and Energy meters.

# UNIT II ELECTRICAL MECHANICS

Construction, Principle of Operation, Basic Equations and Applications of DC Generators, DC Motors, Single Phase Transformer, single phase induction Motor.

# UNIT III SEMICONDUCTOR DEVICES AND APPLICATIONS

Characteristics of PN Junction Diode – Zener Effect – Zener Diode and its Characteristics – Half wave and Full wave Rectifiers – Voltage Regulation.

Bipolar Junction Transistor – CB, CE, CC Configurations and Characteristics – Elementary Treatment of Small Signal Amplifier.

# UNIT IV DIGITAL ELECTRONICS

Binary Number System – Logic Gates – Boolean Algebra – Half and Full Adders – Flip-Flops – Registers and Counters – A/D and D/A Conversion (single concepts)

# UNIT V FUNDAMENTALS OF COMMUNICATION ENGINEERING 12

Types of Signals: Analog and Digital Signals – Modulation and Demodulation: Principles of Amplitude and Frequency Modulations.

Communication Systems: Radio, TV, Fax, Microwave, Satellite and Optical Fibre (Block Diagram Approach only).

# TOTAL: 60 PERIODS

12

12

12

# 4.0

# **REFERENCES:**

Γ

- 1. Muthusubramanian R, Salivahanan S and Muraleedharan K A, "Basic Electrical, Electronics and Computer Engineering", Tata McGraw Hill, Second Edition, (2006).
- 2. Nagsarkar T K and Sukhija M S, "Basics of Electrical Engineering", Oxford press (2005).
- 3. Mehta V K, "Principles of Electronics", S.Chand & Company Ltd, (1994).
- 4. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, (2002).
- 5. Premkumar N, "Basic Electrical Engineering", Anuradha Publishers, (2003).

# GE2152BASIC CIVIL & MECHANICAL ENGINEERINGL T P C(Common to branches under Electrical and I & C Faculty)4 0 0 4

### A – CIVIL ENGINEERING

### UNIT I SURVEYING AND CIVIL ENGINEERING MATERIALS 15

**Surveying**: Objects – types – classification – principles – measurements of distances – angles – leveling – determination of areas – illustrative examples.

**Civil Engineering Materials:** Bricks – stones – sand – cement – concrete – steel sections.

### UNIT II BUILDING COMPONENTS AND STRUCTURES

**Foundations:** Types, Bearing capacity – Requirement of good foundations.

**Superstructure:** Brick masonry – stone masonry – beams – columns – lintels – roofing – flooring – plastering – Mechanics – Internal and external forces – stress – strain – elasticity – Types of Bridges and Dams – Basics of Interior Design and Landscaping.

### **TOTAL: 30 PERIODS**

### **B – MECHANICAL ENGINEERING**

### UNIT III POWER PLANT ENGINEERING

Introduction, Classification of Power Plants – Working principle of steam, Gas, Diesel, Hydro-electric and Nuclear Power plants – Merits and Demerits – Pumps and turbines – working principle of Reciprocating pumps (single acting and double acting) – Centrifugal Pump.

### UNIT IV IC ENGINES

Internal combustion engines as automobile power plant – Working principle of Petrol and Diesel Engines – Four stroke and two stroke cycles – Comparison of four stroke and two stroke engines – Boiler as a power plant.

10

10

# UNIT V REFRIGERATION AND AIR CONDITIONING SYSTEM

10

Terminology of Refrigeration and Air Conditioning. Principle of vapour compression and absorption system – Layout of typical domestic refrigerator – Window and Split type room Air conditioner.

## TOTAL: 30 PERIODS

# **REFERENCES**:

- 1. Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engineering", Tata McGraw Hill Publishing Co., New Delhi, (1996).
- 2. Ramamrutham. S, "Basic Civil Engineering", Dhanpat Rai Publishing Co. (P) Ltd. (1999).
- 3. Seetharaman S. "Basic Civil Engineering", Anuradha Agencies, (2005).
- 4. Venugopal K and Prahu Raja V, "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam, (2000).
- 5. Shantha Kumar S R J., "Basic Mechanical Engineering", Hi-tech Publications, Mayiladuthurai, (2000).

| GI                   | E2155 COMPUTER PRACTICE LABORATORY – II                           | L T P C<br>0 1 2 2 |
|----------------------|-------------------------------------------------------------------|--------------------|
| 1.                   | LIST OF EXPERIMENTS<br>UNIX COMMANDS                              | 15                 |
|                      | Study of Unix OS - Basic Shell Commands - Unix Editor             |                    |
| 2. SHELL PROGRAMMING |                                                                   | 15                 |
|                      | Simple Shell program - Conditional Statements - Testing and Loops |                    |
| 3.                   | C PROGRAMMING ON UNIX                                             | 15                 |
|                      | Dynamic Storage Allocation-Pointers-Functions-File Handling       |                    |

**TOTAL: 45 PERIODS** 

### HARDWARE / SOFTWARE REQUIREMENTS FOR A BATCH OF 30 STUDENTS

#### Hardware

1 UNIX Clone Server
33 Nodes (thin client or PCs)
Printer – 3 Nos.

#### Software

. OS – UNIX Clone (33 user license or License free Linux)  $\hfill\square$  Compiler - C

### LIST OF EXPERIMENTS

- 1. Determination of Young's modulus of the material non uniform bending.
- 2. Determination of Band Gap of a semiconductor material.
- 3. Determination of specific resistance of a given coil of wire Carey Foster Bridge.
- 4. Determination of viscosity of liquid Poiseuille's method.
- 5. Spectrometer dispersive power of a prism.
- 6. Determination of Young's modulus of the material uniform bending.
- 7. Torsional pendulum Determination of rigidity modulus.
  - A minimum of FIVE experiments shall be offered.
  - Laboratory classes on alternate weeks for Physics and Chemistry.
  - The lab examinations will be held only in the second semester.

## GS2165

#### CHEMISTRY LABORATORY – II

L T P C 0 0 3 2

## LIST OF EXPERIMENTS

- 1. Conduct metric titration (Simple acid base)
- 2. Conduct metric titration (Mixture of weak and strong acids)
- 3. Conduct metric titration using BaCl<sub>2</sub> vs Na<sub>2</sub> SO<sub>4</sub>
- 4. Potentiometric Titration (Fe<sup>2+</sup> / KMnO<sub>4</sub> or K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>)
- 5. PH titration (acid & base)
- 6. Determination of water of crystallization of a crystalline salt (Copper sulphate)
- 7. Estimation of Ferric iron by spectrophotometry.
- A minimum of FIVE experiments shall be offered.
- Laboratory classes on alternate weeks for Physics and Chemistry.
- The lab examinations will be held only in the second semester.

# ME2155 COMPUTER AIDED DRAFTING AND MODELING LABORATORY LTPC

### 0122

## List of Exercises using software capable of Drafting and Modeling

- Study of capabilities of software for Drafting and Modeling Coordinate systems (absolute, relative, polar, etc.) – Creation of simple figures like polygon and general multi-line figures.
- 2. Drawing of a Title Block with necessary text and projection symbol.
- 3. Drawing of curves like parabola, spiral, involute using Bspline or cubic spline.
- 4. Drawing of front view and top view of simple solids like prism, pyramid, cylinder, cone, etc, and dimensioning.
- 5. Drawing front view, top view and side view of objects from the given pictorial views (eg. V-block, Base of a mixie, Simple stool, Objects with hole and curves).
- 6. Drawing of a plan of residential building (Two bed rooms, kitchen, hall, etc.)
- 7. Drawing of a simple steel truss.
- 8. Drawing sectional views of prism, pyramid, cylinder, cone, etc,
- 9. Drawing isometric projection of simple objects.
- 10. Creation of 3-D models of simple objects and obtaining 2-D multi-view drawings from 3-D model.

# Note: Plotting of drawings must be made for each exercise and attached to the records written by students.

## List of Equipments for a batch of 30 students:

- 1. Pentium IV computer or better hardware, with suitable graphics facility -30 No.
- 2. Licensed software for Drafting and Modeling. 30 Licenses
- 3. Laser Printer or Plotter to print / plot drawings 2 No.

# **TOTAL: 45 PERIODS**

# EE2155ELECTRICAL CIRCUIT LABORATORY<br/>(Common to EEE, EIE and ICE)L T P C<br/>0 0 3 2

# LIST OF EXPERIMENTS

- 1. Verification of ohm's laws and kirchoff's laws.
- 2. Verification of Thevemin's and Norton's Theorem
- 3. Verification of superposition Theorem
- 4. Verification of maximum power transfer theorem.
- 5. Verification of reciprocity theorem
- 6. Measurement of self inductance of a coil
- 7. Verification of mesh and nodal analysis.
- 8. Transient response of RL and RC circuits for DC input.
- 9. Frequency response of series and parallel resonance circuits.
- 10. Frequency response of single tuned coupled circuits.

### **TOTAL: 45 PERIODS**

# EC2155 CIRCUITS AND DEVICES LABORATORY L T P C

- 1. Verification of KVL and KCL
- 2. Verification of Thevenin and Norton Theorems.
- 3. Verification of superposition Theorem.
- 4. Verification of Maximum power transfer and reciprocity theorems.
- 5. Frequency response of series and parallel resonance circuits.
- 6. Characteristics of PN and Zener diode
- 7. Characteristics of CE configuration
- 8. Characteristics of CB configuration
- 9. Characteristics of UJT and SCR
- 10. Characteristics of JFET and MOSFET
- 11. Characteristics of Diac and Triac.
- 12. Characteristics of Photodiode and Phototransistor.

# **TOTAL: 45 PERIODS**

| ENGLISH LANGUAGE LABORATORY (Optional) | LTPC |
|----------------------------------------|------|
|                                        | 002- |

### 1. Listening:

Listening & answering questions – gap filling – Listening and Note taking- Listening to telephone conversations

### 2. Speaking:

Pronouncing words & sentences correctly - word stress - Conversation practice.

#### Classroom Session

- Speaking: Introducing oneself, Introducing others, Role play, Debate-Presentations: Body language, gestures, postures. Group Discussions etc
- 2. Goal setting interviews stress time management situational reasons

## Evaluation

- (1) Lab Session 40 marks
  - Listening 10 marks
  - Speaking 10 marks
  - Reading 10 marks
  - Writing 10 marks
- (2) Classroom Session 60 marks Role play activities giving real life context – 30 marks

5

5

Presentation

– 30 marks

# Note on Evaluation

1. Examples for role play situations:

a. Marketing engineer convincing a customer to buy his product.
b. Telephone conversation – Fixing an official appointment / Enquiry on availability of flight or train tickets / placing an order. etc.

2. Presentations could be just a Minute (JAM activity) or an Extempore on simple topics or visuals could be provided and students could be asked to talk about it.

# **REFERENCES:**

- 1. Hartley, Peter, Group Communication, London: Routledge, (2004).
- 2. Doff, Adrian and Christopher Jones, Language in Use (Intermediate level), Cambridge University Press, (1994).
- 3. Gammidge, Mick, Speaking Extra A resource book of multi-level skills activities , Cambridge University Press, (2004).
- 4. Craven, Miles, Listening Extra A resource book of multi-level skills activities, Cambridge, Cambridge University Press, (2004).
- 5. Naterop, Jean & Rod Revell, Telephoning in English, Cambridge University Press, (1987).

# LAB REQUIREMENTS

- 1. Teacher Console and systems for students
- 2. English Language Lab Software
- 3. Tape Recorders.

# MA2211TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONL T P C<br/>(Common to all branches)L T P C<br/>3 1 0 4

# OBJECTIVES

The course objective is to develop the skills of the students in the areas of Transforms and Partial Differtial Equations. This will be necessary for their effective studies in a large number of engineering subjects like heat conduction, communication systems, electro-optics and electromagnetic theory. The course will also serve as a prerequisite for post graduate and specialized studies and research.

# UNIT I FOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier Series – Parseval's identify – Harmonic Analysis.

9 + 3

9 + 3

# UNIT II FOURIER TRANSFORMS

Fourier integral theorem (without proof) – Fourier transform pair – Sine and Cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

# UNIT III PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Lagrange's linear equation – Solutions of standard types of first order partial differential equations - Linear partial differential equations of second and higher order with constant coefficients.

# UNIT IV APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9 + 3

Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two-dimensional equation of heat conduction (Insulated edges excluded) – Fourier series solutions in cartesian coordinates.

# UNIT V Z -TRANSFORMS AND DIFFERENCE EQUATIONS 9 + 3

Z-transforms - Elementary properties – Inverse Z-transform – Convolution theorem - Formation of difference equations – Solution of difference equations using Z-transform.

# LECTURES: 45 TUTORIALS : 15 TOTAL : 60 PERIODS

# TEXT BOOKS

1. Grewal, B.S, 'Higher Engineering Mathematics' 40<sup>th</sup> Edition, Khanna publishers, Delhi, (2007)

# REFERENCES

- 1 Bali.N.P and Manish Goyal 'A Textbook of Engineering Mathematics', Seventh Edition, Laxmi Publications(P) Ltd. (2007)
- 2. Ramana.B.V. 'Higher Engineering Mathematics' Tata Mc-GrawHill Publishing Company limited, New Delhi (2007).
- 3. Glyn James, 'Advanced Modern Engineering Mathematics', Third edition-Pearson Education (2007).
- 4. Erwin Kreyszig 'Advanced Engineering Mathematics', Eighth edition-Wiley India (2007).

# ML3202 FOUNDRY AND MACHINING PROCESSES LT P C

# 3003

9

Q

# OBJECTIVE

Foundry and machining, which are important processes to give shape to components, are introduced to students. The students are exposed to various stages of foundry and machining operations

# UNIT I PATTERN PREPARATION AND MOULDING

Introduction to foundry operations, patterns – functions, types, allowances, selection of pattern materials, colour codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of moulding sands, sand preparation, Sand moulding green sand moulding, dry sand moulding, skin dry sand moulding, core sand moulding, loam moulding, fluid sand process, shell moulding, pit and floor moulding, carbon-oxide process.

# UNIT II MELTING PRACTICE AND CASTING TECHNIQUES

Melting practice and special precautions for steels, alloy steels, cast irons, aluminum alloys, copper alloys and magnesium alloys, safety considerations, fluxing degassing and inoculation. Sand casting, permanent mould casting, die casting, centrifugal

casting, plaster mould casting, investment casting, continuous casting, squeeze casting, full mould process.

# UNIT III FUNDAMENTALS OF CUTTING

Mechanics of chip formation – Types of chips produced in cutting – Mechanics of Orthogonal and Oblique cutting – Cutting forces and power – Temperature in cutting - tool nomenclature – Tool life – Cutting fluid – tool wear and failure - Surface finish and integrity – Machinability.

# UNIT IV TURNING, DRILLING AND RELATED PROCESSES

Turning parameters – Lathe and lathe operations – High speed machining – Ultra precision machining and hard turning – Cutting screw threads – Boring and boring machines – Drilling and drills – Drilling machines – Reaming and reamers – Tapping and taps – Design consideration for drilling, reaming and tapping – Deep drilling.

# UNIT V MILLING, SHAPING AND RELATED PROCESSES

Milling operations – Milling machines – Planning and shaping – Broaching and broaching machines – Sawing – Filling and finishing – Gear manufactured by machining.

# TOTAL: 45 PERIODS

9

9

9

# TEXT BOOKS

- 1. Heine,R.W., Loper,C.R., Rosenthal,P.C. "Principles of Metal Cutting", Tata McGraw Hill Publishing Co., Ltd., New Delhi.
- 2. Jain,P.L., "Principles of Foundry Technology", Tata McGraw Hill Co., Ltd., New Delhi, 2003

# REFERENCES

- 1. Serope Kalpakjain, Steven R.Schmid, "Manufacturing Engineering and Technology", Pearson Education, 2003.
- 2. Sharma P.C., "A Text Book of Production Engineering", S.Chand & Co., Ltd., 6<sup>th</sup> Edition, 2005.
- 3. Ramana Rao, T. V., "Metal Casting Principles and Practice", New Age Publishing Co., New Delhi, 1<sup>st</sup> Reprint 2007.
- 4. Peter R. Beeley., "Foundry Technology", Elsevier, 2001.
- 5. Srinivasan, N. K., "Foundry Engineering", Khanna Tech. Publications, New Delhi, 1994.
- 6. ASM Metals Hand Book, Vol.15, "Casting", ASM International, 10th Edition, 1991.

## ML3203 THERMODYNAMICS AND KINETICS OF MATERIALS

LT P C 3 1 0 4

8

10

10

10

7

# OBJECTIVE

The knowledge of thermodynamics is the basic requirement for understanding various alloy systems, phase transformations and interpreting properties. It also covers kinetics of reactions as well as heat and mass transfer in different systems.

# UNIT I INTRODUCTION TO THERMODYNAMICS

Definition of thermodynamic terms; concept of states, systems, equilibrium. Equation of states, extensive and intensive properties, homogeneous and heterogeneous systems. Phase diagram of a single component system. Internal energy, heat capacity, enthalpy, isothermal, and adiabatic processes.

# UNIT II LAWS OF THERMODYNAMICS

The Second law of thermodynamics, entropy degree of reversibility and irreversibility, criteria of equilibrium, auxiliary functions, combined statements, Maxwell's relations, transformation formula, Gibbs-Helmoltz equation. Concept of Third law, temperature dependence of entropy, statistical interpretation of entropy, Deby and Einstein concept of heat capacity, relation between Cp and Cv, Consequences of third law.

# UNIT III THERMODYNAMICS OF REACTIONS

Solutions, partial molal quantities, ideal and non-ideal solutions, Henry's law, Gibbs -Duhem equation, regular solution, quasi-chemical approach to solution, statistical treatment. Change of standard state. Phase relations and phase rule-its applications. Free energy composition diagrams for binary alloy systems, determination of liquidus, solidus and solvus lines. Effect of pressure on phase transformation and phase equilibria. Thermodynamics of electrochemical cells, solid electrolytes. Thermodynamics of point defects in solids.

# UNIT IV INTRODUCTION TO METALLURGICAL KINETICS

Heterogeneous reaction kinetics-gas-solid, solid-liquid, liquid-liquid and solid-solid systems. Solid state diffusion- Ficks law, mechanism of diffusion, uphill diffusion, kirkendall effect, steady an transient diffusion, external mass transfer – fluid flow and its relevance to mass transfer, general mass transport equation, concept of mass transfer coefficient, models of mass transfer- film theory and Higbie's penetration theory, Internal mass transfer- ordinary and Knudsen diffusion, mass transfer with reaction, adsorption-physical adsorption vs. chemisorption.

# UNIT V ELETROCHEMICAL KINETICS

Concept of polarization, activation over potential, Butler-Volmer and Tafel's equation, applications in Electrodeposition and corrosion, concentration over potential, limiting current, electro-winning and corrosion

# TOTAL : 60 PERIODS

# TEXTBOOKS

- 1. David R Gaskell, Introduction to Metallurgical Thermodynamics, McGraw-Hill series, Taylor and Francis, 2003
- 2. Prasad, Krishna Kant, Ray, H.S. and Abraham, K.P, Chemical and Metallurgical Thermodynamics, 2006

# REFERENCES

- 1. Kenneth G. Denbigh, Principles of chemical equilibrium (Fourth edition), Cambridge University Press, 1981.
- 2. Arthur W. Adamson and Alice P. Gast, Physical chemistry of surfaces (Sixth edition), John Wiley, 1997.
- 3. Herbert B. Callen, Thermodynamics and an introduction to thermostatistics (Second edition), John Wiley, 1985.
- 4. David L. Goodstein, States of matter, Dover, 1985.
- 5. Federick Reif, Fundamentals of statistical and thermal physics, McGraw Hill, 1965.
- 6. Irving M. Klotz and Robert M. Rosenberg, Chemical thermodynamics: *Basic* theory and methods, Benjamin/Cummings, 1986.
- 7. Peter W. Atkins and Julio DePaula, Physical chemistry (Seventh edition), Oxford University Press, 2001.
- 8. Keith J. Laidler and John H. Meiser, Physical chemistry (Second edition), Houghton Mifflin, 1995.
- 9. Upadhyaya, G.S. and Dube, R.K., "Problems in Metallurgical Thermodynamics and Kinetics", Pergamon Press, London, 1977.

#### CE3205 STRENGTH AND TESTING OF MATERIALS L T P C 3 1 0 4

# OBJECTIVES

The students are introduced to various methods of analysis and evaluation of mechanical properties in terms of stress, strain and deformation in different loading modes: tension, compression, shear and torsion. This knowledge is essential for understanding mechanical behaviour of materials. Testing of materials for determination of properties is dealt with in detail.

# UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS

Rigid and deformable bodies – Strength, Stiffness and Stability – stresses; tensile, compressive and shear – deformation of simple and compound bars under axial load – thermal stress – elastic constants – strain energy and unit strain energy – Strain energy in uniaxial loads.

### UNIT II BEAMS - LOADS AND STRESSES

Types of beams: supports and loads – shear force and bending moment in beams – cantilever, simply supported and overhanging beams – stresses in beams – theory of simple bending – stress variation along the length and in the beam section.

Elastic curve of neutral axis of the beam under normal loads – Evaluation of beam deflection and slope: Double integration method, Macaulay Method, and Moment-area method – Columns – End conditions – Equivalent length of a column – Euler equation – Slenderness ratio – Rankine formula for columns

# UNIT III TENSILE TESTING

Engineering stress and engineering strain curve, true stress and true strain curve, instability in tension, effect of strain rate and temperature on flow properties, tensile specimens and testing machines. Notch tensile test, anisotropy of tensile properties.

# 9

10

9

# UNIT IV HARDNESS TESTING AND IMPACT TESTING

Brinell, Vickers, Rockwell, Rockwell superficial, rebound, micro hardness tests and testing machines. hardness conversion. Impact, IZOD, Charpy, Instrumented Impact, relation to  $K_{IC}$ 

# UNIT V TORSION AND TORSION TESTING

Analysis of torsion of circular bars – Shear stress distribution – Bars of solid and hollow circular section – Stepped shaft – Twist and torsion stiffness – Compound shafts – Fixed and simply supported shafts – Application to close-coiled helical springs – Maximum shear stress in spring section including Wahl Factor – Deflection of helical coil springs under axial loads – Design of helical coil springs – stresses in helical coil springs under torsion loads

# L: 45, T: 15, TOTAL: 60 PERIODS

# TEXT BOOKS:

- 1. Popov, E. P, "Engineering Mechanics of Solids", 2nd edition, Prentice Hall, 1998.
- 2. Beer F. P. and Johnston R, "Mechanics of Materials", 3/e, McGraw-Hill 2002.

# **REFERENCES:**

- 1. Nash W. A, "Theory and problems in Strength of Materials", Schaum Outline Series, 01/e, Tata McGraw-Hill Book Co, New York, 1995
- 2. Kazimi S.M.A, "Solid Mechanics", Tata McGraw-Hill Publishing Co, New Delhi, 1981.
- 3. Ryder, G. H, "Strength of Materials", Macmillan India Ltd., Third Edition, 2002.
- 4. Ray, Hulse, Keith Sherwin & Jack Cain, "Solid Mechanics", Palgrave ANE Books, 2004.
- 5. Singh, D. K "Mechanics of Solids" Pearson Education, 2002.
- 6. Timoshenko S. P, "Elements of Strength of Materials", Affiliated East-West Press Pvt. Ltd 5th edition. 1968.

# ML3205 MATERIALS STRUCTURE AND PROPERTIES L T P C 3 0 0 3

# OBJECTIVE

The subject introduces the correlation of properties of materials and their structure. It revises student's knowledge of crystal structure and phase diagrams of various alloy systems. The course not only covers metals, mainly ferrous and non-ferrous alloys, but also structures and properties of ceramics, polymers and composites.

# UNIT I STRUCTURE OF MATERIALS

Structure of atom – Atomic models – Bonding in solids – Bonding forces and energies – lonic, Covalent, metallic and van der Waals Bond - Crystal structure - Unit Cell – Bravais lattice – BCC – FCC – HCP - Interstitial sites – NaCl crystal – CsCl crystal – Perovskite structure – Diamond structure – Graphite – Crystal directions and planes.

# UNIT II STRUCTURE OF METALS AND ALLOYS

Imperfection in crystals – Point defects – Dislocations – Slip plane – Movement of dislocations – Planar defects and grain boundaries – solid solutions – Hume Rothery

8

9

8

rule – Phase diagram – Lever rule – Gibb's phase rule – Phase diagram for binary alloys – Eutectic – Peritectic – Eutectoid – Zone refining.

# UNIT III FERROUS AND NON FERROUS ALLOYS

Allotropy and phase change of pure iron – Classification of steels and cast iron – iron – carbon equilibrium diagram – Microstructure of iron and steel - Ferrous alloys and their applications –Heat treatment - Factors affecting conductivity of a metal – Electrical Resistivity in alloys – Thermal conductivity of metals and alloys – Silver, Copper and aluminum – High Resistivity alloys – nichrome, manganin, constantan and kanthal and their composition and applications – Super hard materials - Tungsten carbide and Boron nitrides.

# UNIT IV CERAMIC AND COMPOSITE MATERIALS

Advanced Ceramic Materials - Crystal Structures - Silicate Ceramics - Glasses – Glass Ceramics – Functional properties and applications of ceramic materials – Classification of composites - Fiber reinforced materials – Law of mixtures – Continuous fibers – discontinuous fibers – Particle-reinforced materials – Cermets – Dispersion strengthened materials – Laminates - Application of composites in electrical and mechanical components – nuclear industry.

## UNIT V POLYMER MATERIALS

Classification of polymer – Mechanisms of polymerisation - Some commercially important individual polymer – Thermoplastics - Elastomers – Thermosets – Engineering plastics - Liquid crystal polymers - Conductive polymers – High Performance fibers - Biomedical applications – Photonic polymers.

# TOTAL: 45 PERIODS

# TEXT BOOKS

- 1. William D. Callister, Jr., Materials Science and Engineering an Introduction, 2/e Edition , John Wiley & Sons, Inc., 2007.
- 2. V.Raghavan, Materials Science and Engineering, Prentice –Hall of India Pvt. Ltd., 2007

# REFERENCES

- 1. Sidney H. Avner, Introduction to physical metallurgy, Tata Mc-Graw-Hill, Inc.,2/e, 1997.
- 2. W.Bolton, Engineering materials technology, 3rd Edition, Butterworth & Heinemann, 2001.
- 3. Donald R. Askeland, Pradeep P. Phule, The Science and Engineering of Materials 5th Edition, Thomson Learning, First Indian Reprint, 2007.
- 4. F.N.Billmayer, Test Book of polymer science, John Wiley & Sons, New York, 1994.
- 5. William F.Smith, Structural Properties of Engineering Alloys, Tata Mc-Graw-Hill, Inc., 1993.
- 6. Kingery. W.D., Bowen H.K. and Uhlmann D.R., Introduction to Ceramics, 2nd Edition, John Wiley & Sons, New York, 1976.

#### 10

10

ME3206

#### METROLOGY AND MEASUREMENTS

5

10

12

10

### OBJETCTIVE

- To provide knowledge on various Metrological equipments available to measure the dimension of the components.
- To provide knowledge on the correct procedure to be adopted to measure the dimension of the components.

## UNIT I .BASICS OF METROLOGY

Introduction to Metrology – Need – Elements – Work piece, Instruments – Persons – Environment – their effect on Precision and Accuracy – Errors – Errors in Measurements – Types – Control – Types of standards.

## UNIT II LINEAR AND ANGULAR MEASUREMENTS

Linear Measuring Instruments – Evolution – Types – Classification – Limit gauges – gauge design – terminology – procedure – concepts of interchange ability and selective assembly – Angular measuring instruments – Types – Bevel protractor clinometers angle gauges, spirit levels sine bar – Angle alignment telescope – Autocollimator – Applications.

## UNIT III ADVANCES IN METROLOGY

Basic concept of lasers Advantages of lasers – laser Interferometers – types – DC and AC Lasers interferometer – Applications – Straightness – Alignment. Basic concept of CMM – Types of CMM – Constructional features – Probes – Accessories – Software – Applications – Basic concepts of Machine Vision System – Element – Applications.

### UNIT IV FORM MEASUREMENT

Principles and Methods of straightness – Flatness measurement – Thread measurement, gear measurement, surface finish measurement, Roundness measurement – Applications.

# UNIT V MEASUREMENT OF POWER, FLOW AND TEMPERATURE 8

Force, torque, power - mechanical , Pneumatic, Hydraulic and Electrical type. Flow measurement: Venturimeter, Orifice meter, rotameter, pitot tube – Temperature: bimetallic strip, thermocouples, electrical resistance thermometer – Reliability and Calibration – Readability and Reliability.

### TOTAL: 45 PERIODS

# TEXT BOOKS

- 1. Jain R.K. "Engineering Metrology", Khanna Publishers, 2005.
- 2. Gupta. I.C., "Engineering Metrology", Dhanpatrai Publications, 2005.

# REFERENCES

- 1. Shot bolt, "Metrology for Engineers", McGraw Hill, 1990.
- 2. Backwith, Marangoni, Lienhard, "Mechanical Measurements", Pearson Education, 2006.

# CE3207 STRENGTH OF MATERIALS LABORATORY

## **OBJECTIVE:**

To study the properties of materials when subjected to different types of Loading.

- 1. Tension test on mild steel rod
- 2. Double shear test on metals
- 3. Torsion test on mild steel rod.
- 4. Impact test on metal specimen
- 5. Hardness test on metals
- 6. Compression test on helical spring
- 7. Deflection test on carriage spring

**TOTAL : 45 PERIODS** 

# ML3208 MICROSTRUTURE ANALYSIS LABORATORY LTPC

0 0 3 2

### OBJECTIVE

The students having studied phase diagrams and microstructure evolution of various alloy system, experience the manifestation in samples studied by the metallographic technique. This lab is designed to expose students to specimen preparation and microstructure analysis of various commonly used metals and alloys.

## List of Experiments

- 1. Specimen preparation for metallographic observation working of metallurgical microscope.
- 2. Grain size measurements.
- 3. Macro etching cast, forged and welded components.
- 4. Sulphur printing and phosphor printing.
- 5. Microstructure cast iron-gray, nodular and malleable iron unetched.
- 6. Microstructure of gray, nodular and white iron etched.
- 7. Microstructure of iron, steel (low carbon, medium carbon, high carbon, hypo and hypereutectoid steels).
- 8. Microstructure of stainless steels and high speed steels.
- 9. Over heated structure and banded structure in steels.
- 10. Microstructure of copper alloys
- 11. Microstructure of aluminium alloys
- 12. Microstructure of lead alloys

**TOTAL: 45 PERIODS** 

10

10

9

### OBJECTIVE

The students having studied the basics of material structures and properties and strength of materials, shall be introduced to dislocation theories of plasticity behaviour, various strengthening mechanisms and fracture mechanics. It will expose students to failure mechanisms due to fatigue and creep as well as their testing methods.

### UNIT I ELASTIC AND PLASTIC BEHAVIOUR

Elastic behavior of materials - Hooke's law, plastic behaviour: dislocation theory -Burger's vectors and dislocation loops, dislocations in the FCC, HCP and BCC lattice, stress fields and energies of dislocations, forces on and between dislocations, dislocation climb, intersections of dislocations, Jogs, dislocation sources, multiplication of dislocations, dislocation pile-ups, Slip and twinning.

## UNIT II STRENGTHENING MECHANISMS

Elementary discussion of cold working, grain size strengthening. Solid solution strengthening. martensitic strengthening, precipitation strengthening, dispersion strengthening, fibre strengthening, examples of above strengthening mechanisms from ferrous and non-ferrous systems, simple problems. Yield point phenomenon, strain aging and dynamic strain aging

## UNIT III FRACTURE AND FRACTURE MECHANICS

Types of fracture, basic mechanism of ductile and brittle fracture, Griffith's theory of brittle fracture, Orowan's modification. Izod and Charpy Impacts tests, Ductile to Brittle Transition Temperature (DBTT), Factors affecting DBTT, determination of DBTT. Fracture mechanics-introduction, modes of fracture, stress intensity factor, strain energy release rate, fracture toughness and determination of K<sub>IC</sub>, introduction to COD, J integral.

## UNIT IV FATIGUE BEHAVIOUR AND TESTING

Fatigue: Stress cycles, S-N curves, effect of mean stress, factors affecting fatigue, structural changes accompanying fatigue, cumulative damage, HCF / LCF, thermomechanical fatigue, application of fracture mechanics to fatigue crack propagation, fatigue testing machines.

### UNIT V CREEP BEHAVIOUR AND TESTING

Creep curve, stages in creep curve and explanation, structural changes during creep, creep mechanisms, metallurgical factors affecting creep, high temperature alloys, stress rupture testing, creep testing machines, parametetric methods of extrapolation. Deformation Mechanism Maps according to Frost/Ashby.

# L: 45, T: 15, TOTAL: 60 PERIODS

# TEXT BOOKS

- 1. Dieter, G.E., "Mechanical Metallurgy", McGraw-Hill, SI Edition, 1995.
- 2. Davis.H. E., Troxell G.E., Hauck.G. E. W., "The Testing of Engineering Materials", McGraw-Hill, 1982.

### REFERENCES

1. Hayden, H. W. W. G. G. Moffatt, J. Moffatt and J. Wulff, The Structure and Properties of Materials, Vol.III, Mechanical Behavior, John Wiley & Sons, New York, 1965.

# 8

- 2. Wulff, The Structure and Properties of Materials, Vol. III "Mechanical Behavior of Materials", John Wiley and Sons, New York, USA, 1983.
- 3. Honeycombe R. W. K., "Plastic Deformation of Materials", Edward Arnold Publishers, 1984.
- 4. Suryanarayana, A. V. K., "Testing of Metallic Materials", Prentice Hall India, New Delhi, 1979.

# ML3210 PRIMARY PROCESSING OF IRON AND STEEL LT P C 3 0 0 3

# OBJECTIVE

The course covers the production of iron and steel from raw material, primary processing to refinement to special steels.

8

10

9

9

9

# UNIT I RAW MATERIALS AND BURDEN PREPARATION

Iron ore classification, Indian iron ores, limestone and coking coal deposits, problems associated with Indian raw materials, Iron Ore beneficiation and agglomeration, theory and practice of sintering and pelletizing, testing of burden materials, burden distribution on blast furnace performance. Recycling os steel products.

# UNIT II BLAST FURNACE OPERATION AND REACTIONS

Blast furnace parts, construction and design aspects, ancillary equipment for charging, preheating the blast, gas cleaning, pig casting, blast furnace instrumentation and control of furnace. Blast furnace operation, irregularities and remedies. Compositional control of metal and slag in blast furnace, modern trends in blast furnace practice. Reduction of iron ores and oxides of iron by solid and gaseous reductions-thermodynamics and kinetics study of direct and indirect reduction, Gruner's theorem, blast furnace reactions. C-O and Fe-C-O equilibria, Rist diagrams, material and heat balance.

# UNIT III PRINCIPLES OF STEEL MAKING

Development of steel making processes, physico-chemical principles and kinetic aspects of steel making, carbon boil, oxygen transport mechanism, desulphurisation, dephosphorisation, slag-functions, composition, properties and theories, raw materials for steel making and plant layout.

## UNIT IV BESSEMER, OPEN HEARTH AND OXYGEN STEEL MAKING PROCESSES

Acid and Basic Bessemer processes, Side Blown Converter, O.H- constructional features, process types, operation, modified processes, duplexing, pre-treatment of hot metal. Top Blown processes-L.D, L.D.A.C., bottom blown processes, combined blown processes, rotating oxygen processes-kaldo and rotor, modern trends in oxygen steel making processes.

### UNIT V CAST IRON, LADLE METALLURGY AND ELECTRIC STEEL MAKING

Arc and Induction furnace-constructional features. Production practice for plain carbon steels, low alloy – Cast irons and ductile iron, stainless, tool and special steels, modern developments. Secondary steel making processes, continuous steel making processes – Deoxidation and teeming practice. Principle, methods and their comparison, killed, rimmed and capped steels, degassing practices, ingot production, ingot defects and

remedies, continuous casting. Indian steel industry and global trends in steel making technology.

# **TOTAL: 45 PERIODS**

# **TEXT BOOKS**

- 1. Tupkary, R.H., "Modern Iron Making", 3rd edition, Khanna Publishers, New Delhi, 2000.
- 2. Tupkary, R.H., "Modern Steel Making", 3rd Edition, Khanna Publications, New Delhi, 2000.

# REFERENCES

- 1. Biswas, A.K., "Principles of blast furnace iron making theory and practice", SBA Publications, Kolkata, 1994.
- 2. Bashforth, G. R., "Manufacture of Iron and Steel", Vol. I, Chapman and Hall London, 1964.
- 3. Bashforth, G. R., "Manufacture of Iron and Steel", Vol.2, 3rd Edition, Chapman & Hall, London, 1964.
- 4. "Making, Shaping and Treating of Steel", US Steel Corporation, 11<sup>th</sup> edition, 1994.

# ML3211

# OBJECTIVES:

To understand the structure, property relations of non-ferrous alloys with special emphasis on engineering applications.

NONFERROUS METALLURGY

#### UNIT I COPPER ALLOYS

Properties and applications of metallic copper: Major alloys of Copper: Brasses, Cu-Zn allovs, Phase diagram of industrially relevant portion, different compositions, characteristics and uses. Bronzes, Tin bronze, compositions, properties and uses, other bronzes like Cu-Al. Cu-Si. Cu-Mn and Cu-Be alloying systems. Their special properties and applications, Cu-Ni alloys, Cu-Cr alloys.

#### UNIT II **ALUMINIUM AND ITS ALLOYS**

Aluminium - Properties and uses of metallic aluminum. Alloys of aluminium, Classification, Wrought and Cast alloys, Heat treatable and Non, heat treatable, Age hardening. Overaging – Al-Cu, Al-Mg-Si, Al-Zn-Mg, and Al-Li alloys.

#### UNIT III MAGNESIUM AND TITANIUM ALLOYS

Magnesium - properties and uses of Magnesium alloys. Titanium -Unique characteristics of the metal  $-\alpha$ ,  $\alpha$ - $\beta$  and  $\beta$  Titanium alloys - major types, Titanium aluminides their properties and uses.

#### UNIT IV NICKEL AND ZINC ALLOYS

Properties of nickel and uses of nickel, alloys of nickel, nickel in special alloys and magnetic materials, Nickel aluminides, Use of zinc in corrosion protection of ferrous materials, Zinc alloys, properties and uses, Die, casting qualities.

#### 9

LTPC 3 0 0 3

# 9

# 9

# UNIT V LEAD, TIN, ANTIMONY AND PRECIOUS METALS

9

Major characteristics and applications, low melting nature and solder alloys. Gold, Silver and Platinum, Nobility of these metals, Engineering properties and applications of these metals and their alloys.

# TOTAL: 45 PERIODS

# TEXT BOOKS

- 1. Balram Gupta, "Aerospace Materials", Vol. 1, 2 & 3. S. Chand & Co., New Delhi, 1996.
- 2. Brick R. M., Gordon R. A. and Phillips A., "Structure and Properties of Engineering Materials", McGraw-Hill Book Co., New York, 1992.

# REFERENCES

- 1. Clark and Varney, "Physical Metallurgy for Engineers", Affiliated East West Press, New Delhi, 1987.
- 2. Willam F. Smith, "Structure and Properties of Engineering Alloys", McGraw-Hill, USA, 1993.
- 3. W. H. Dennis," Metallurgy of the Non-Ferrous Metals", Sir Isaac Pitman and Sons, London, 1967.

## ML3212

# POWDER METALLURGY

L T P C 3 0 0 3

10

7

# OBJECTIVE

This course teaches powder preparation, characterization, compaction and sintering. This knowledge is essential to understand powder metallurgy applications in aerospace, automobile and machining materials.

#### UNIT I CHARACTERISTICS AND TESTING OF METAL POWDERS 10 Sampling, chemical composition purity, surface contamination etc. Particle size. and its measurement, Principle and procedure of sieve analysis, microscopic analysis: sedimentation elutriation permeability adsorption methods and resistivity methods:

sedimentation, elutriation, permeability. adsorption methods and resistivity methods: particle shape, classifications, microstructure. specific surface area. apparent and tap density. green density. green strength, sintered compact density, porosity, shrinkage.

# UNIT II POWDER MANUFACTURE AND CONDITIONING

Mechanical methods Machine milling, ball milling, atomization, shotting. chemical methods, condensation, thermal decomposition, carbonyl. reduction by gas-hydride, dehydride process, electro deposition, precipitation from aqueous solution and fused salts, hydrometallurgical method. Physical methods: Electrolysis and atomisation processes, types of equipment, factors affecting these processes, examples of powders produced by these methods, applications, powder conditioning, heat treatment, blending and mixing, types of equipment, types of mixing and blending

# UNIT III POWDER COMPACTION

Pressureless compaction: slip casting and slurry casting. pressure compactionlubrication, single ended and double ended compaction, isostatic pressing, powder rolling, forging and extrusion, explosive compaction.

# UNIT IV SINTERING

Stage of sintering, property changes, mechanisms of sintering, liquid phase sintering and infiltration, activated sintering, hot pressing and Hot Isostatic Pressing HIP, vacuum sintering, sintering furnaces and sintering atmosphere, finishing operations – sizing, coining, repressing and heat treatment.

# UNIT V APPLICATIONS

10

8

Major applications in aerospace. nuclear and automobile industries. Bearing Materialstypes, self lubrication and other types, methods of production, properties, applications. Sintered Friction Materials-clutches, brake linings, Tool Materials- cemented carbides, oxide ceramics, Cermets- Dispersion strengthened materials.

# TOTAL: 45 PERIODS

# TEXT BOOKS:

- 1. Sinha A. K., "Powder Metallurgy", Dhanpat Rai & Sons. New Delhi, 1982.
- 2. Ramakrishnan, P., "Powder Metallurgy", New Age International Publishers, 1st edition, 2007

# **REFERENCES**:

- 1. ASM Handbook. Vol. 7, "Powder Metallurgy", Metals Park, Ohio, USA, 1990.
- 2. Animesh Bose., "Advances in Particulate Materials", Butterworth Heinemann. New Delhi, 1995.
- 3. Kempton. H Roll., "Powder Metallurgy", Metallurgical Society of AMIE, 1988.
- 4. Ramakrishnan. P., "Powder Metallurgy Opportunities for Engineering Industries", Oxford and IBH Publishing Co., Pvt. Ltd, New Delhi, 1987.
- 5. Erhard Klar., "Powder Metallurgy Applications, Advantages and Limitations", American Society for Metals, Ohio, 1983.
- 6. Sands. R. L. and Shakespeare. C. R. "Powder Metallurgy", George Newes Ltd. London, 1966

# ML3213

# SOLID STATE PHYSICS

## L T P C 3 1 0 4

# **OBJECTIVES:**

This subject provides the insight to physics of material starting with basics of matter waves, lattice vibrations and band theories to understand properties of metals, semiconductors, electric conductors, dielectrics, ferroelectrics, superconductors and thermal properties of materials

#### **UNIT I INTRODUCTION TO MODERN PHYSICS AND LATTICE DYNAMICS** 9 Matter waves – Heisenberg's uncertainity principle - Schrodinger's time independent

wave equation – Physical significance of wave function (y) – Application to a particle in a one dimensional box (infinite potential well)- Interatomic forces and lattice dynamics and simple metals, ionic and covalent crystals. Elastic waves in one dimensional array of identical atoms, vibrational modes of a diatomic linear lattice and dispersion relations, acoustic and optical modes, phonon dispersion relation.

# UNIT II BAND THEORY OF SOLIDS AND SEMICONDUCTOR PHYSICS 9

Fermi- Dirac distribution function, density of states, temperature dependence of Fermi energy, specific heat, use of Fermi- Dirac statistics in the calculation of thermal conductivity and electrical conductivity, Widemann -Franz ratio, susceptibility, width of conduction band, Drude theory of light, absorption in metals. Bloch theorem. Behaviour

of electrons in periodic potentials, Kronig-Penny model, E vs k relation, Density of states in a band, effective mass of electron, physical basis of effective mass, Intrinsic semiconductors. Band model, Fermi level, Expressions for electron and hole concentration in intrinsic and extrinsic semiconductors, Thermal ionization of impurities, Hall effect in semi conductors (p-type and n-type).

# UNIT III DIELECTRICS AND FERROELECTRICS

Macroscopic description of the static dielectric constant. The electronic and ionic polarizabilities of molecules, orientational polarization, Measurement of the dielectric constant of a solid. The internal field of Lorentb, Clausium-Mosotti relation. Behaviour of dielectrics in an alternating field, elementary ideas on dipole relaxation, classification of ferroelectric crystals -BaTiO3 and KDP. Thermodynamics of ferroelectric crystals - Devonshire theory.

# UNIT IV MAGNETISM

Larmor diamagnetism. Paramagnetism, Curie Langevin and Quantum theories. Susceptibility of rare earth and transition metals. Ferromagnetism : Domian theory, Weiss molecular field and exchange, spin waves: dispersion relation and its experimental determination by inelastic neutrons scattering, heat capacity. Nuclear Magnetic resonance: Conditions of resonance, Bloch equations

# UNIT V SUPERCONDUCTIVITY

Occurrence of superconductivity, Destruction of superconductivity by magnetic fields Meissner effect, Heat capacity, Energy gap and Isotope effect. London's equations, Penetration depth, Coherence length, Cooper-pairs; elements of BCS theory, Giaver tunneling, Josephson effects (basic ideas), Elements of high temperature superconductivity (basic concepts only).

# L: 45, T: 15, TOTAL: 60 PERIODS

# TEXT BOOKS

- 1. S. O. Pillai," Solid state physics", New age International Pvt Ltd, 6th edition, 2005
- 2. Wahab, M. A., "Solid State Physics", Narosa Publishing, 2nd Edition, 2005

# REFERENCES

- 1. Charles Kittel.," Introduction to Solid State Physics", John Wiley, 8th edition
- 2. Ibach, Harald, Lüth, Hans," An Introduction to principles of Materials Science", Springer, 2003.
- 3. James D. Patterson, Bernard C. Bailey," Solid State Physics: Introduction to the theory", Springer-Verlag, edition 1, 2005
- 4. Mckelvy, J. P.," Solid State and Semi-conductor Physics", Harper International, 1966
- 5. Federick Reif," Fundamentals of Statistical and Thermodynamical Physics", McGraw-Hill, 1965

9

9

# ML3214 POLYMER PROCESS ENGINEERING

8

9

## OBJECTIVE

The subject exposes students to the basics of polymer structure and their properties. Apart from Thermodynamics, the course imparts knowledge on processing polymers, i.e. by extrusion, moulding and fiber spinning.

# UNIT I BASICS OF POLYMER PROCESS ENGINEERING 9

Fundamentals of polymers – Classification – Characterization – Polymer Structure & behaviour – Effect of temperature – Molecular weight – MWD – GPC – Branching – Crosslinking – Polarity – Flexibility – Crystallinity - Orientation.

## UNIT II THERMODYNAMICS OF POLYMER

Rheology of Polymers – Dissolution of Polymers – Solubility parameter and its significance – Thermodynamic relations - Interrelation between polymer processing, structure and properties.

## UNIT III EXTRUSION AND EXTRUSION BASED PROCESS

Features of Single screw extruder – Flow mechanism – Analysis of flow – Screw design – Basics of twin & multiscrew extruders – Vented extruders – Cross head extrusion – Tubular blown film process - Coextrusion.

UNIT IV INJECTION MOULDING AND OTHER MOULDING PROCESS 10 Injection Moulidng systems – process – Moulding cycle – machine units – Two plate & three plate moulds – Design aspects – Problems in Quality – Effects of Shear, hear and pressure – Orientation – Shrinkage – Spruless Moulding – Other Processes – Compression & Transfer Moulding - Blow Moulding – Rotational Moulding – Thermoforming – Vacuum forming.

# UNIT V CALENDERING, FIBER SPINNING PROCESS AND OTHER PROCESS 8

Calendering principle & process – Fiber Spinning process – Process & mechanism of Melt, Dry , Wet & Reaction spinning – Structural Foam Moulding (SF) – Sandwich Moulding (SM) – RIM & RRIM – Processing for Thermosets – Methods for FRP.

# TOTAL: 45 PERIODS

# TEXT BOOKS

- 1. R. G. Griskey," Polymer Process Engineering", Chapman & Hall, New York (1995).
- 2. D. H. Morton Jones," Polymer Processing", Chapman & Hall, New York (1995).

# REFERENCES

- 1. Rodringuez, "Principles of Polymer Systems", Tata McGraw Hill, 1970.
- 2. Billmayer Jr. and Fred. W., "Textbook of Polymer Science", WileyTappers, 1965.
- 3. David, J. W., "Polymer Science and Engineering", Prentice Hall, 1971.
- 4. Schmidt, A. K. and Marlies, G. A., "High Polymers Theory and Practice", McGraw Hill, 1948.
- 5. McKelvey, J. M., "Polymer Processing," John Wiley, 1962.

#### ML 3217 METROLOGY AND MEASUREMENTS LABORATORY LTPC 0 0 3 2

### **OBJECTIVES:**

Students should have knowledge on common metrological Instruments.

### LIST OF EXPERIMENTS

- 1. Sine bar
- 2. Tool Makers Microscope
- 3. Rolling Gear tester
- 4. Comparator
- 5. Co-ordinate Measuring Machine
- 6. Surface finish measurement
- 7. Machine Vision System
- 8. Force Measurement
- 9. Torque Measurement

### **TOTAL: 45 PERIODS**

#### MANUFACTURING TECHNOLOGY LABORATORY LTPC ML3216

0 0 3 2

### OBJECTIVE

The practical knowledge is imparted to students in major areas of machining which has been studies in theory.

### LIST OF EXPERIMENTS

- 1. Taper Turning
- 2. External Thread Cutting
- 3. Knurling
- 4. Shaping exercise example hexagonal and square prisms
- 5. Drilling and Tapping
- 6. Determination of cutting forces in Turning and Milling Operations
- 7. Contour Milling using vertical milling machine
- 8. Gear hobbing
- 9. Gear shaping
- 10. Hexgonal machining using horizontal milling machine

**TOTAL: 45 PERIODS** 

## ML3301 THEORY AND APPLICATIONS OF METAL FORMING

### **OBJECTIVES:**

The basic knowledge on plasticity taught in mechanical metallurgy is extended to theory and applications of metal forming. Various metal forming process and their analysis are studied in detail.

### UNIT I STRESS / STRAIN RATE TENSOR

State of stress, components of stress, symmetry of stress tensor, principle stresses, stress deviator, Von Mises, Tresca Yield criteria, comparison of yield criteria, Octahedral shear stress and shear strain, Forming load calculations. Strain Rate Tensor.

### UNIT II FUNDAMENTALS OF METAL FORMING

Classification of forming process, Mechanics of metal working, Flow stress determination, Effect of temperature, strain rate and metallurgical structure on metal working, Slip, twining, Friction and lubrication. Deformation zone geometry, Workability, Residual stresses.

### UNIT III FORGING AND ROLLING

Forging-types of presses and hammers. Classification, Open die forging and Closed die forging, die design, forging in plane strain, calculation of forging loads, forging defectscauses and remedies, residual stresses in forging. Rolling: Classification of rolling processes, types of rolling mills, hot and cold rolling, rolling of bars and shapes, forces and geometrical relationship in rolling, analysis of rolling load, torque and power, rolling mill control, rolling defects – causes and remedies.

### UNIT IV EXTRUSION AND DRAWING

Direct and indirect extrusion, variables affecting extrusion, deformation pattern, equipments, port-hole extrusion die, hydrostatic extrusion, defects and remedies, simple analysis of extrusion, tube extrusion and production of seamless pipe and tube. Drawing of rods, wires and tubes.

### UNIT V SHEET METAL FORMING AND OTHER PROCESSES

Forming methods – Shearing, blanking, bending, stretch forming, deep drawing. Types of dies used in press working defects in formed part, sheet metal formability, formability limit diagram.

High velocity forming: Comparison with conventional forming, Explosive forming, Electro hydraulic, Electro Magnetic forming, Dynapak and Petroforge forming.

### TEXT BOOKS

- 1. Dieter, G. E., "Mechanical Metallurgy", McGraw-Hill Co., SI Edition, 1995.
- 2. Nagpal, G. R., "Metal Forming Processes", Khanna Pub., New Delhi, 2000.
- 3. Surender Kumar, "Technology of Metal Forming Processes", PHI, New Delhi, 2008.

### REFERENCES

- 1. Kurt Lange, "Handbook of Metal Forming", Society of Manufacturing Engieners, Michigan, USA, 1988.
- 2. Avitzur, "Metal Forming Process and Analysis", Tata McGraw-Hill Co., New Delhi, 1977.

# 9

## 9

7

### T: 45+15, TOTAL: 60 PERIODS

LT P C 3 1 0 4

10

### ML3302

### OBJECTIVE

Material Properties have to suit the purpose of an application. When designing a machine or component, many factors have to be considered and optimised. This course covers most issues for mechanical design optimisation.

### UNIT I MATERIAL SELECTION IN DESIGN

Introduction – relation of materials selection to design – general criteria for selection – performance characteristics of materials – materials selection process – design process and materials selection – economics of materials – recycling and materials selection

### UNIT II MATERIALS PROCESSING AND DESIGN

Role of Processing in Designing – classification of manufacturing processes – types of processing systems – factors determining process selection. Design for manufacturability, assembly, machining, casting, forging and welding

### UNIT III MANUFACTURING CONSIDERATIONS IN DESIGN

Surface finish – texture – dimensional tolerances in fitting – interchangeability – selective assembly – geometric tolerance. Selection of fits and tolerances

### UNIT IV MATERIALS PROPERTIES AND DESIGN

Stress – Strain diagram – design for strength, rigidity – design under static loading, variable loading, eccentric loading – stress concentration. Design examples with shaft design, spring design and C-frames.

### UNIT V MATERIALS IN DESIGN

Design for brittle fracture, fatigue failure, corrosion resistance. Designing with plastics, brittle materials

### TEXT BOOKS

- 1. Dieter George E, Engineering Design, A materials and processing approach, McGraw Hill, 3<sup>rd</sup> edition, 2000
- 2. Bhandari, Design of Machine Elements, Tata McGraw Hill, 2006

### REFERENCES

1. CES Materials Selector, GRANTA Design and M. F. Ashby, 2007

### MATERIAL ASPECTS IN DESIGN

L T P C 3 1 0 4

9

9

9

12

6

L: 45, T: 15, TOTAL: 60 PERIODS

### CHARACTERIZATION OF MATERIALS

### OBJECTIVE

ML3303

Characterisation of materials is very important for studying the structure of materials and to interpret their properties. The students study the theoretical foundations of metallography, X- ray diffraction, electron diffraction, scanning electron microscopy, chemical and thermal analysis.

### UNIT I METALLOGRAPHIC TECHNIQUES

Resolution, depth of focus and components of microscope, polarized light, phase contrast, interference microscopy, hot stage and quantitative metallographic techniques, specimen preparation techniques.

### UNIT II X-RAY DIFFRACTION TECHNIQUES

Crystallography basics, characteristic spectrum, Bragg's law, Diffraction methods – Laue, rotating crystal and powder methods. Stereographic projection. Intensity of diffracted beams –structure factor calculations and other factors. Cameras- Laue, Debye-Scherer cameras, Seeman-Bohlin focusing cameras.

### UNIT III APPLICATION OF X-RAY DIFFRACTION

Diffractometer – general feature and optics, proportional, scintillating and Geiger counters. X-ray diffraction application in the determination of crystal structure, lattice parameter, phase diagram and residual stress – quantitative phase estimation, ASTM catalogue of Materials identification

### UNIT IV ELECTRON MICROSCOPY

Construction and operation of Transmission electron microscope – Diffraction effects and image formation, specimen preparation techniques. Construction, modes of operation and application of Scanning electron microscope, EDX. Electron probe micro analysis, basics of scanning Tunneling Microscope (STM) and Atomic Force Microscope.

### UNIT V ADVANCED CHEMICAL AND THERMAL ANALYSIS

Basic principles, practice and applications of X-ray spectrometry, X-ray photoelectron spectrometry, Auger spectroscopy, Differential thermal analysis DTA, Differential scanning calorimetry DSC and thermogravimetric analysis TGA

### TEXT BOOKS

- 1. Cullity, B. D.," Elements of X-ray diffraction", Addison-Wesley Company Inc., New York, 3rd Edition, 2000.
- 2. Cherepin and Malik, "Experimental Techniques in Physical Metallurgy", Asia Publishing Co. Bombay, 1968.

### REFERENCES

- 1. Brandon D. G, "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986.
- 2. Thomas G., "Transmission electron microscopy of metals", John Wiley, 1996.
- 3. Weinberg, F., "Tools and Techniques in Physical Metallurgy", Volume I & II, Marcel and Decker, 1970.
- 4. Phillips, V. A., "Modern metallographic techniques and their application", John-Wiley & sons, 1972.
- 5. Haines, P. J., "Principles of Thermal Analysis and Calorimetry", Royal Society of Chemistry (RSC), Cambridge, 2002.

8

10

9

LTPC 3 0 0 3

9

TOTAL: 45 PERIODS

### ML3304 HEAT TREATMENT OF METALS AND ALLOYS

### OBJECTIVE

This laboratory is elaborating on the multitude of heat treatment techniques, mainly applicable to iron, steel. It gives a comprehensive understanding of the changes in microstructure and property created by controlled heat treatment.

#### UNIT I **TRANSFORMATIONS IN STEELS**

Iron - carbon equilibrium diagram: Transformations on heating and cooling, influence of alloying elements, general principles of heat treatment of steels, isothermal and continuous cooling transformations in steels. Continuous cooling curves TTT and CCT diagrams. mechanism of pearlitic, bainitic and martensitic transformations.

#### UNIT II HEAT TREATMENT PROCESSES

Annealing, Normalizing, Hardening - retained austenite - measurement and methods of its elimination, hardenability studies- Jominy end quench test, Grossman's experiments Tempering- Hollomon & Jaffe tempering correlations, Austempering and Martempering, Precipitation hardening, thermomechanical treatment, intercritical heat treatment, other heat treatment processes - splat cooling.

#### UNIT III CASE HARDENING

Introduction, carburising: principle, carbon potential, mechanism, application of Fick's law, depth of carburization and its control, methods of carburising, heat treatment after carburising, structure, properties and common problems in carburising. Nitriding: introduction, steels used, mechanism, effect of microstructure, white layer, nitriding methods, ion nitriding and nitro-carburising. Induction and flame hardening: principle, methods, operating variables. Measurement of case depth.

#### UNIT IV HEAT TREATMENT EQUIPMENT

Various heating media used for heat treatment. Temperature and atmosphere control, carburising atmosphere and carbon potential measurement, nitriding gas atmospheres. Quenching media and their characteristics. Various heat treatment furnaces, fluidized bed furnaces, cryo chamber, cryo treatment of steels, sealed quenched furnace, plasma equipment.

#### HEAT TREATMENT OF SPECIFIC ALLOYS UNIT V

Heat treatment of carbon steels, various types of tool steels, high speed steels, maraging steels and die steels. Heat treatment of gray cast irons, white cast irons, malleabilising and S.G.irons, austempering of S.G.Iron. Heat treatment of aluminium alloys. copper alloys and nickel alloys. Defects in heat treated parts: causes and remedies. **TOTAL: 45 PERIODS** 

### TEXT BOOKS

- 1. Rajan.T. V., Sharma C.P., Ashok Sharma., "Heat Treatment Principles And Techniques" Prentice-Hall of India Pvt. Ltd., New Delhi, 2002
- 2. Vijendra Singh, "Heat Treatment of Metals", First edition, Standard Publishers Distributors New Delhi, 1998.

### REFERENCES

- 1. American Society for Metals, "Metals Handbook Vol.4", ASM Metals Parks. Ohio, USA, 1991
- 2. Prabhudev. K H. "Handbook of Heat Treatment of Steels", Tata McGraw-Hill Publishing Co., New Delhi, 1988.

8

LT P C 3 0 0 3

# 10

8

8

- 3. Novikov, I., "Theory of Heat Treatment of Metals", MIR Publishers, Moscow, 1978
- 4. Thelning K.E., "Steel and its heat treatment", Bofors Handbook, 1975.

#### ML3305 INTRODUCTION TO NANOTECHNOLOGY LTPC 3 0 0 3

### OBJECTIVE

This subject imparts basics of nanotechnology, their importance and tools to characterise nanostructures. The student are introduced to carbon nanotubes and few other nanostructured materials and their applications.

#### UNIT I INTRODUCTION

Moore's law, silicon micro fabrication techniques such a photolithography/electron beam lithography and their advantages and limitations, importance of nanotechnology and its potential impacts, historical milestones in nanotechnology, prerequisites to make transition into nanotechnology era, proposed futuristic applications in nanotechnology and current state of the art.

#### UNIT II SCANNING PROBE MICROSCOPY

Tool for performing structural analysis at the nanometer scale and as a tool for nanopositioning. Operating principle of Scanning Tunnelling Microscope (STM), Atomic Force Microscope (AFM) and Scanning near Field Optical Microscope (SNFOM) and their applications by drawing on practical research examples. Advantages and disadvantages of SPM technique. Potentiality of SPM to overcome other complementary techniques.

#### UNIT III CHARACTERISATION OF NANOMATERIALS

Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) applicability to characterize nanostructured materials.

#### UNIT IV CARBON NANOTUBES

Types of carbon nanotubes such as single-walled and multi-walled nanotubes, fabrication, physical and chemical properties, applications. Other carbon morphologies, bucky balls, graphenes.

#### UNIT V NANOSTRUCTURED MATERIALS

Liquid crystal templates: surfactants and their phase behaviour: formation of micelles and liquid crystal phases, for use as nanoscale moulds for templating, electroplating of nanostructured mesoporous films - physical properties of mesoporous nanostructured materials and applications (current and potential).

### TEXT BOOKS:

- 1. Mark A. Ratner and Daniel Ratner, "Nanotechnology: A Gentle Introduction to the Next Big Idea" Prentice Hall, 2003
- 2. Bandyopadhyay, A. K.," Nanomaterials", New Age International Publishers, 1st edition, 2007

### **REFERENCES:**

1. Bamberg, D., Grundman, M. and Ledentsov, N. N.," Quantum Dot Heterostructures", Wiley, 1999

10

10

### 7

8

### 10

**TOTAL: 45 PERIODS** 

- Chow, G. M. and Noskova, N. I. (eds.)," Nanostructured Materials: Science and Technology", NATO Advanced Study Institute Series, High Technology-Vol. 50, Kluwer Publications, the Netherlands, 1998.
- Jan Korvink and Andreas Greiner," Semiconductors for micro and nanotechnology: an introduction for engineers Jan Korvink & Andreas Greiner", Weinheim Cambridge: Wiley-VCH, 2001
- N John Dinardo, "Nanoscale characterisation of surfaces & interfaces", Weinheim Cambridge: Wiley-VCH, 2000 2nd ed G. Timp (ed), "Nanotechnology", AIP press/Springer, 1999
- 5. Bhusan, Bharat (Ed), "Springer Handbook of Nanotechnology", 2nd edition, 2007.

### ML3306 CORROSION AND SURFACE ENGINEERING

### OBJECTIVE

The subject provides knowledge on various types of corrosion, their kinetics, testing and methods of protection as well as introduction to tribology.

### UNIT I INTRODUCTION

Introduction tribology, surface degradation, wear and corrosion, types of wear, adhesive, abrasive, oxidative, corrosive, erosive and fretting wear, roles of friction and lubrication-, expressions for corrosion rate. emf and galvanic series - merits and demerits -Pourbaix diagram for iron, magnesium and aluminium. Forms of corrosion - Uniform, pitting, intergranular, stress corrosion. corrosion fatigue. dezincification. erosion corrosion, crevice corrosion - Cause and remedial measures - Pilling Bedworth ratio - High temperature oxidation.

### UNIT II KINETICS OF CORROSION

Exchange current density, polarization - concentration, activation and resistance, Tafel equation; passivity, electrochemical behaviour of active/passive metals, Flade potential, theories of passivity, Effect of oxidising agents

### UNIT III CORROSION IN INDUSTRIAL PRACTICE

Atmospheric, pitting, dealloying, stress corrosion cracking, intergranular corrosion, corrosion fatigue, fretting corrosion and high temperature oxidation; causes and remedial measures, Corrosion failure – Inspection and analysis of corrosion damage

### UNIT IV TESTING

Purpose of corrosion testing - Classification - Susceptibility tests for intergranular corrosion- Stress corrosion test.salt spray test humidity and porosity tests, accelerated weathering tests. ASTM standards for corrosion testing and tests for assessment of wear

### UNIT V PROTECTION METHODS

Electroless plating and Anodising - Cathodic protection, metallic, organic and inorganic coatings, corrosion inhibitors - principles and practice - inhibitors for acidic neutral and other media. Special surfacing processes - CVD and PVD processes, sputter coating. Laser and ion implantation. Arc spray. plasma spray. Flame spray. HVOF.

### **TOTAL : 45 PERIODS**

LTPC 3 0 0 3

12

8

8

8

### TEXT BOOKS

- 1. Fontana and Greene. "Corrosion Engineering". McGraw Hill Book Co. New York. USA 1983.
- Raj Narayan. "An Introduction to Metallic Corrosion and its prevention". Oxford & 1BH. New Delhi. 1983.

### REFERENCES

- 1. Kenneth G Budinski. "Surface Engineering for Wear Resistance". Prentice Hall Inc.. Engelwood Cliff., New Jersey. USA 1988
- 2. Uhlig. H.H. "Corrosion and Corrosion Control". John Wiley & Sons. New York. USA. 1985.
- 3. ASM Metals Handbook. Vol.5. "Surface Engineering". ASM Metals Park. Ohio. USA. 1994.
- 4. ASM Metals Handbook. Vol.I3, "Corrosion". ASM Metals Park. Ohio. USA. 1994

### ML3307

### HEAT TREATMENT LABORATORY

LTPC 0 0 3 2

### OBJECTIVE

This laboratory course offers practical knowledge of heat treatment applicable to iron and steel and studies microstructural changes and hardness evolution.

### List of Experiments

- 1. Determination of grain size of low carbon steels
- 2. Annealing and normalising of carbon steels
- 3. Spheroidisation annealing of high carbon steels
- 4. Effect of quenching media on hardening of steel
- 5. Effect of tempering temperature and time on tempering of steel
- 6. Carburizing of steel
- 7. Case hardness depth measurements
- 8. Austempering treatment
- 9. Hardenability test (Grossman and/or Jominy)
- 10. Identification of defects in heat treated materials
- 11. Heat treatment of cast iron
- 12. Heat treatment of alloy steels
- 13. Heat treatment of non-ferrous alloys
- 14. Microstructure of heat treated steels

**TOTAL : 45 PERIODS** 

### ML3308 MATERIALS PROCESSING LABORATORY

L T P C 0 0 3 2

### OBJECTIVE

The students will learn to select an appropriate method and understand the process parameters influencing material processing. The student's theoretical knowledge gained from powder metallurgy, polymer processing and heat treatments will guide them in understanding materials processing.

### LIST OF EXPERIMENTS:

- 1. Hardness testing
- 2. Particle size distribution of powders
- 3. Liquid penetrant test
- 4. Ericson cup tester
- 5. Powder compaction
- 6. Sintering of powder compacts
- 7. Testing of Sintered powder compact
- 8. Casting experiments
- 9. Bulk forming experiments
- 10. Chemical route synthesis of powders

TOTAL: 45 PERIODS

9

# ML3309 PRESENTATION SKILLS & TECHNICAL SEMINAR L T P C 0 0 2 1

To enrich the communication skills of the student and presentations of technical topics of interest, this course is introduced. In this course, a student has to present three Technical papers or recent advances in engineering/technology that will be evaluated by a Committee constituted by the Head of the Department.

| ML3310 | BIO AND SMART MATERIALS | LTPC |
|--------|-------------------------|------|
|        |                         | 3003 |

### OBJECTIVE

The students are introduced to functional materials such as smart and bio materials in this course.

### UNIT I INTRODUCTION

Intelligent / Smart materials – Functional materials – Polyfunctional materials – Structural materials, Electrical materials, bio-compatible materials etc. – Intelligent biological materials – Biomimetics – Wolff's Law – Biocompatibility – Material response: swelling and leaching, corrosion and dissolution, deformation and failure, friction and wear – host response: the inflammatory process – coagulation and hemolysis – approaches to thrombo resistance materials development.

### UNIT II ELECTRO-RHEOLOGICAL AND PIEZOELECTRIC SMART MATERIALS

The principal ingredients of smart materials –microsensors- hybrid smart materials - an algorithm for systhesizing smart materials – active, passive reactive actuator based smart structures- suspensions and electro-rheological fluids - Bingham body model – principal characteristics of electro-rheological fluids – charge migration mechanism for the dispersed phase – electro-rheological fluid domain – fluid actuators- design parameter – application of Electo-rheological fluids – PZT – PVDF – PVDF film – properties of commercial piezoelectric materials – properties of piezoelectric film.

### UNIT III SHAPE MEMORY (ALLOYS) SMART MATERIALS

Nickel – Titanium alloy (Nitinol) – Materials characteristics of Nitinol –martensitic transformations – austenitic transformations – thermoelastic martensitic transformations – cu based SMA, chiral materials – applications of SMA – continuum applications of SMA fastners – SMA fibers – reaction vessels, nuclear reactors, chemical plant, etc. – micro robot actuated by SMA – SMA memorization process (Satellite Antenna Applications) SMA blood clot filter – Impediments to applications of SMA – SMA plastics – Primary moulding – secondary moulding – potential applications of SMA plastics.

### UNIT IV ORTHOPAEDIC AND CARDIOVASCULAR MATERIALS

Bone composition and properties – temporary fixation devices – joint replacement – biomaterials used in bone and joint replacement metals and alloys- blood clotting – blood rheology – blood vessels – The heart – aorta and valves – geometry of blood circulation – The lungs – vascular implants: vascular graft, cardiac valve prostheses, cardiac pacemakers – blood substitutes – extracorporeal blood circulation devices.

### UNIT V DENTAL AND OTHER MATERIALS

Tooth composition and mechanical properties – Fillings and restoration materials – Materials for oral and maxillofacial surgery – detantal cements and dental amalgams – dental adhesives – Biomaterials in opthalmology – tissue grafts - skin grafts – connective tissue grafts – tissue adhesives – drug delivery methods and materials.

### TOTAL : 45 PERIODS

### TEXT BOOKS

- 1. Sujata V., Bhat., "Biomaterials", Narosa Publication House, New Delhi, 2002
- 2. M. V. Gandhi and B. S. Thompson," Smart Materials and Structures", Chapman and Hall, London, First Edition, 1992.

### REFERENCES

- 1. Deurig,T.W., Melton,K.N, Stockel,D. and Wayman,C.M.," Engineering aspects of Shapememory Alloys", Butterworth Heinemann, 1990.
- 2. Rogers,C.A., Smart Materials," Structures and Mathematical issues", Technomic Publishing Co., U.S.A, 1989.
- 3. Jonathn Black," Biological Performance of Materials: Fundamentals of biocompatibility", Marcel Dekker Inc., New York, 1992.
- 4. Williams, D.F. (editor), "Materials Science and Technology: A comprehensive treatment", Volume 14, Medical and Dental Materials, VCH Publishers Inc. New York, 1992.
- 5. Silver, F. and Doillon, C., "Biocompatibility: Interactions of Biological and implantable materials". Volume I Polymers, VCH Publishers Inc. New York, 1989.
- 6. Hench, L.L. and Ethridge, E.C., "Biomaterials: An Interfacial Approach", Academic Press, 1982.

9

9

9

### ML3311 CREEP AND FATIGUE BEHAVIOR OF MATERIALS L T P C 3 1 0 4

### OBJECTIVE

The useful life of components are often limited by the fracture, fatigue and creep properties of the materials used. The students study the fundamental processes leading to failure of technical components.

### UNIT I INTRODUCTION

Strength of perfect crystal - Lattice resistance to dislocation movement - Elastic properties of dislocation - Dislocation multiplication - Slip and twinning in crystalline solid.

### UNIT II HIGH – TEMPERATURE DEFORMATION RESPONSE

Creep Of Solids – Temperature stress – Strain rate relation- Deformation mechanism – Super plasticity deformation mechanism maps – Extrapolation procedure for creep rupture data – materials for elevated temperature rules.

### UNIT III CYCLIC STRESS AND STRAIN FATIGUE

Macrofractrography fatigue failures - cyclic stress and strain controlled fatigue - Fatigue life estimation for notched components – Crack initiation mechanisms.

### UNIT IV FATIGUE CRACK PROPAGATION

Stress and crack lengths correlations with FCP – Fracture modes in Fatigue – Microscopic fracture mechanisms – Crack growth behavior at  $\Delta k$  extremes – Influences – Micro structural aspects of FCP in metal alloys.

### UNIT V ANALYSIS OF ENGINEERING FAILURES

Typical defects – Microscopic surface examination – metallographic and fractographic examination – Component failure analysis – Fracture surface preservation – Cleaning and replication techniques and image interpretation.

## TOTAL : 60 PERIODS

### TEXT BOOKS

- 1. Richard. W. Hertzberg," Deformation and Fracture Mechanism of Engineering Materials", John Willey and Sons, 4th edition, 1996.
- 2. Anderson, T. L.," Fracture Mechanics: Fundamentals and Applications", CRC Press, 2<sup>nd</sup> edition, 1995

### REFERENCES

- 1. Courtney, T. H., "Mechanical Behaviour of Materials", McGraw-Hill, 1990
- 2. Jones, D. R. H," Engineering Materials 3, Materials Failure Analysis- Case Studies and Design Implications", Pergamon, 1993.
- 3. Hull & Bacon "Introduction to Dislocations", 3rd ed., Pergamon Press, 1984.
- 4. Frost & Ashby, "Deformation Mechanism Maps", 1st ed., Pergamon Press, 1982.
- 5. Suresh, S., "Fatigue of Materials", Cambridge University Press, 2 nd edition, 1998.
- 6. Cadek, J., "Creep in Metallic Materials", Elsevier, 1988.
- 7. Ashok Saxena," Nonlinear Fracture Mechanics for Engineers", CRC Press, 1998.

# 12

12

### 12

12

### FINITE ELEMENT ANALYSIS

# ML3312

### OBJECTIVES

- To introduce the concepts of Mathematical Modeling of Engineering Problems.
- To appreciate the use of FEM to a range of Engineering Problems.

### UNIT I INTRODUCTION

Historical Background – Mathematical Modeling of field problems in Engineering – Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems – Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.

### UNIT II ONE-DIMENSIONAL PROBLEMS

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors. Assembly of Matrices solution of problems from solid mechanics and heat transfer. Fourth Order Beam Equation – Transverse deflections and Natural frequencies of beams.

### UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

Second Order 2D Equations involving Scalar Variable Functions – Variational formulation – Finite Element formulation – Triangular elements – Shape functions and element matrices and vectors. Application to Field Problems - Thermal problems – Torsion of Non circular shafts – Quadrilateral elements – Higher Order Elements.

### UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and temperature effects – Stress calculations - Plate and shell elements.

### **UNIT V ISOPARAMETRIC FORMULATION AND MISCELLANEOUS TOPICS 9** Natural co-ordinate systems – Isoparametric elements – Shape functions for isoparametric elements – One and two dimensions – Serendipity elements – Numerical integration and application to plane stress problems - Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software.

### L: 45, T: 15, TOTAL: 60 PERIODS

### TEXT BOOKS

- 1. Seshu. P. "Textbook of Finite Element Analysis" Prentice Hall of India, 2003.
- 2. J. N. Reddy, "Finite Element Method" Tata McGraw Hill, 2003.

### REFERENCES

- 1. Chandrupatla and Belegundu, "Introduction to Finite Elements in Engineering" PHI / Pearson Education, 2003.
- 2. Logan. D.L. "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 2002.
- 3. Cook R.D., Malkus. D.S. Plesha, ME., "Concepts and Applications of Finite Element Analysis", John Wiley Sons 2003.
- 4. S.S. Rao, "The Finite Element Method in Engineering "Butter worth Heinemann, 2001.

9

9

9

### ML3313

### OBJECTIVE

Composites are a relatively new class of materials. In this course the students learn about the benefits gained when combining different materials into a composite.

COMPOSITE MATERIALS

#### UNIT I INTRODUCTION TO COMPOSITES

Fundamentals of composites - need for composites - enhancement of properties classification of composites - Matrix-Polymer matrix composites (PMC), Metal matrix composites (MMC), Ceramic matrix composites (CMC) - Reinforcement - particle reinforced composites, Fibre reinforced composites. Applications of various types of composites.

#### UNIT II POLYMER MATRIX COMPOSITES

Polymer matrix resins – thermosetting resins, thermoplastic resins – reinforcement fibres - rovings - woven fabrics - non woven random mats - various types of fibres. PMC processes - hand lay up processes - spray up processes - compression moulding reinforced reaction injection moulding - resin transfer moulding - Pultrusion - Filament winding - Injection moulding. Fibre reinforced plastics (FRP), glass fibre reinforced plastics (GRP).

#### UNIT III METAL MATRIX COMPOSITES

Characteristics of MMC, various types of metal matrix composites allov vs. MMC. advantages of MMC, limitations of MMC, Reinforcements - particles - fibres. Effect of reinforcement - volume fraction - rule of mixtures. Processing of MMC - powder metallurgy process - diffusion bonding – stir casting – squeeze casting.

#### UNIT IV **CERAMIC MATRIX COMPOSITES**

Engineering ceramic materials - properties - advantages - limitations - monolithic ceramics - need for CMC - ceramic matrix - various types of ceramic matrix composites- oxide ceramics - non oxide ceramics - aluminium oxide - silicon nitride reinforcements - particles- fibres- whiskers. Sintering - Hot pressing - Cold isostatic pressing (CIP) – Hot isostatic pressing (HIP).

#### **ADVANCES IN COMPOSITES** UNIT V

Carbon /carbon composites – advantages of carbon matrix – limitations of carbon matrix carbon fibre - chemical vapour deposition of carbon on carbon fibre perform. Sol-gel technique. Composites for aerospace applications.

### **TEXT BOOKS**

- 1. Mathews F. L. and Rawlings R. D., "Composite Materials: Engineering and Science", Chapman and Hall, London, England, 1st edition, 1994.
- 2. Chawla K. K., "Composite materials", Springer Verlag, Second Edition, 1998.

### REFERENCES

- 1. Clyne, T. W. and Withers, P. J., "Introduction to Metal Matrix Composites", Cambridge University Press, 1993.
- 2. Strong, A.B., "Fundamentals of Composite Manufacturing", SME. 1989.
- 3. Sharma, S.C., "Composite materials", Narosa Publications, 2000.
- 4. Broutman, L. J. and Krock, R.M., "Modern Composite Materials", Addison-Wesley, 1967

### 7

**TOTAL: 45 PERIODS** 

12

9

9

LTPC 3003 MG3314

### OBJECTIVE

To provide a clear understanding of basic management principles that leads to corporate building. Industrial Management deals with not only functions of management but also organizational structure and dynamics and includes modern concepts of Industrial Management

### UNIT I INTRODUCTION

Technology Management - Definition – Functions – Evolution of Modern Management – Scientific Management Development of Management Thought. Approaches to the study of Management, Forms of Organization – Individual Ownership – Partnership – Joint Stock Companies – Co-operative Enterprises – Public Sector Undertakings, Corporate Frame Work – Share Holders – Board of Directors – Committees – Chief Executive – Line and Functional Managers, Constraints – Environmental – Financial – Legal – Trade Union–

### UNIT II FUNCTIONS OF MANAGEMENT

Planning – Nature and Purpose – Objectives – Strategies – Policies and Planning Premises – Decision Making – Organizing – Nature and Process – Premises – Departmentalization – Line and staff – Decentralization – Organizational culture, Staffing - selection and training – Placement – Performance appraisal – Career Strategy – Organizational Development. Leading – Managing human factor – Leadership – Communication, Controlling - Process of Controlling – Controlling techniques, productivity and operations management – Preventive control, Industrial Safety.

### UNIT III ORGANIZATIONAL BEHAVIOUR

Definition – Organization – Managerial Role and functions – Organizational approaches, Individual behaviour – causes – Environmental Effect – Behavior and Performance, Perception – Organizational Implications. Personality – Contributing factors – Dimension – Need Theories – Process Theories – Job Satisfaction, Learning and Behavior – Learning Curves, Work Design and approaches.

### UNIT IV GROUP DYNAMICS

Group Behavior – Groups – Contributing factors – Group Norms, Communication – Process – Barriers to communication – Effective communication, leadership – formal and informal characteristics – Managerial Grid – Leadership styles – Group Decision Making – Leadership Role in Group Decision, Group Conflicts – Types –Causes – Conflict Resolution – Inter group relations and conflict, Organization centralization and decentralization – Formal and informal – Organizational Structures – Organizational Change and Development – Change Process – Resistance to Change – Culture and Ethics.

### UNIT V MODERN CONCEPTS

Management by Objectives (MBO) –, Management by Exception (MBE), Strategic Management - Planning for Future direction – SWOT Analysis – Evolving development strategies, information technology in management – Decisions support system – Management Games – Business Process Re-engineering(BPR) – Enterprises Resource Planning (ERP) – Supply Chain Management (SCM) – Activity Based Management (ABM) – Global Perspective - Principles and Steps – Advantages and disadvantages

50

### 9 aio

**TOTAL: 45 PERIODS** 

### LT P C 3 0 0 3

9

9

9

### TEXT BOOK

1. Herald Knottz and Heinz Weihrich, 'Essentials of Management', McGraw Hill Publishing Company, Singapore International Edition, 1980.

### **REFERENCES**:

- 1. S.Chandran, Organizational Behaviours, Vikas Publishing House Pvt.. Ltd, 1994
- 2. Ties, AF, Stoner and R.Edward Freeman, 'Management' Prentice Hall of India Pvt. Ltd. New Delhi 110011, 1992
- 3. Joseph J, Massie, 'Essentials of Management' Prentice Hall of India Pvt. Ltd. 1985.

### ML3315 COMPOSITE MATERIALS LABORATORY LT P C

### 0032

### OBJECTIVE

Students learn the fabrication processes of different composite materials and the mechanical characterization of these materials.

### List of experiments

- 1. Fabrication of Continuous Fiber reinforced Polymer Composites
- 2. Fabrication of Dis-continuous Fiber reinforced Polymer Composites
- 3. Tensile Testing
- 4. Flexural strength
- 5. Hardness testing
- 6. Impact testing
- 7. Environmental Testing (Humidity and temperature)

### TOTAL: 45 PERIODS

### GE3318 COMMUNICATION SKILLS LABORATORY

### LT P C 0 0 4 2

Globalisation has brought in numerous opportunities for the teeming millions, with more focus on the students' overall capability apart from academic competence. Many students, particularly those from non-English medium schools, find that they are not preferred due to their inadequacy of communication skills and soft skills, despite possessing sound knowledge in their subject area along with technical capability. Keeping in view their pre-employment needs and career requirements, this course on Communication Skills Laboratory will prepare students to adapt themselves with ease to the industry environment, thus rendering them as prospective assets to industries. The course will equip the students with the necessary communication skills that would go a long way in helping them in their profession.

### **OBJECTIVES:**

- To equip students of engineering and technology with effective speaking and listening skills in English.
- To help them develop their soft skills and interpersonal skills, which will make the transition from college to workplace smoother and help them excel in their job.

|                                                                         |                                                                 | 52                                                             |                       |  |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|-----------------------|--|--|
| 1. Resume / Report Preparation / Letter writing: Students prepare their |                                                                 |                                                                |                       |  |  |
|                                                                         | II. Practice Session                                            | (Weightage – 60%)                                              | 24 periods            |  |  |
|                                                                         | INTERVIEW SKILLS:<br>Kinds of interviews – Re<br>Video samples. | equired Key Skills – Corporate                                 | culture – Mock interv |  |  |
|                                                                         |                                                                 | tion process ? - Structure of G<br>n GD – Team work - Body Lar |                       |  |  |
|                                                                         | 0                                                               | y - Stress Management & Pois                                   |                       |  |  |

GROL (1) Why is other

(2) Time management – Articulateness – Assertiveness – Psychometrics –

3. SPEAKING: (6) Phonetics: Intonation – Ear training - Correct Pronunciation – Sound recognition exercises - Common Errors in English.

To enhance the performance of students at Placement Interviews, Group

(Weightage 40%)

Discussions and other recruitment exercises.

A. ENGLISH LANGUAGE LAB

1. LISTENING COMPREHENSION:

Listening and answering questions.

Listening and typing – Listening and sequencing of sentences – Filling in the blanks -

questions.

### 2. READING COMPREHENSION: Filling in the blanks - Close exercises - Vocabulary building - Reading and answering

I. PC based session

2.

Conversations: Face to Face Conversation – Telephone conversation – Role play activities (Students take on roles and engage in conversation)

#### Β. DISCUSSION OF AUDIO-VISUAL MATERIALS (6 PERIODS)

(Samples are available to learn and practice)

#### 1. **RESUME / REPORT PREPARATION / LETTER WRITING**

Structuring the resume / report - Letter writing / Email Communication - Samples.

Elements of effective presentation - Structure of presentation - Presentation tools - Voice Modulation - Audience analysis - Body language - Video samples

SOFT SKILLS: 3. Innova

### 4.

PRESENTATION SKILLS:

and /ideo sampl

#### 5. INTER

Kinds views-Video

| II. Practice Session | (Weightage – 60%) | 24 periods |
|----------------------|-------------------|------------|
|----------------------|-------------------|------------|

(6)

(1)

(1)

- (1)

(2)

(6)

24 periods

(18 Periods)

own resume and report.

- 2. Presentation Skills: Students make presentations on given topics. (8)
- 3. Group Discussion: Students participate in group discussions. (6)
- 4. Interview Skills: Students participate in Mock Interviews (8)

### **TEXT BOOKS**

- 1. Anderson, P.V, **Technical Communication**, Thomson Wadsworth, Sixth Edition, New Delhi, 2007.
- 2. Prakash, P, Verbal and Non-Verbal Reasoning, Macmillan India Ltd., Second Edition, New Delhi, 2004.

### REFERENCES

- 1. John Seely, **The Oxford Guide to Writing and Speaking**, Oxford University Press, New Delhi, 2004.
- 2. Evans, D, Decisionmaker, Cambridge University Press, 1997.
- 3. Thorpe, E, and Thorpe, S, **Objective English**, Pearson Education, Second Edition, New Delhi, 2007.
- 4. Turton, N.D and Heaton, J.B, **Dictionary of Common Errors**, Addison Wesley Longman Ltd., Indian reprint 1998.

### LAB REQUIREMENT

- 1. Teacher console and systems for students.
- 2. English Language Lab Software
- 3. Career Lab Software

| SI.No. | Description of Equipment                          | Quantity required |
|--------|---------------------------------------------------|-------------------|
| 1.     | Server                                            |                   |
|        | <ul> <li>PIV system</li> </ul>                    |                   |
|        | <ul> <li>1 GB RAM / 40 GB HDD</li> </ul>          |                   |
|        | <ul> <li>OS: Win 2000 server</li> </ul>           | 1 No.             |
|        | <ul> <li>Audio card with headphones</li> </ul>    |                   |
|        | (with mike)                                       |                   |
|        | • JRE 1.3                                         |                   |
| 2.     | Client Systems                                    |                   |
|        | <ul> <li>PIII or above</li> </ul>                 |                   |
|        | <ul> <li>256 or 512 MB RAM / 40 GB HDD</li> </ul> |                   |
|        | • OS: Win 2000                                    | 60 No.            |
|        | <ul> <li>Audio card with headphones</li> </ul>    |                   |
|        | (with mike)                                       |                   |
|        | o JRE 1.3                                         |                   |
| 3.     | Handicam Video Camera (with video lights and      | 1 No.             |
|        | mic input)                                        | 4 Nie             |
| 4.     | Television - 29"                                  | 1 No.             |
| 5.     | Collar mike                                       | 1 No.             |
| 6.     | Cordless mikes                                    | 1 No.             |
| 7.     | Audio Mixer                                       | 1 No.             |
| 8.     | DVD Recorder / Player                             | 1 No.             |
| 9.     | LCD Projector with MP3 /CD /DVD                   |                   |
|        | provision for audio / video facility -            | 1 No.             |
|        | Desirable                                         |                   |

### Requirement for a batch of 60 students

### ML3317 ADVANCED MATERIALS CHARACTERIZATION L T P C LABORATORY 0032

### OBJECTIVE

This laboratory gives practical exposure characterization techniques and teaches to interpret results with knowledge gained from the theory subject on characterization of materials.

### LIST OF EXPERIMENTS:

- 1. Identification of phase
- 2. Cell parameters calculation
- 3. Biphasic composition weight percentage based on X-ray diffraction
- 4. Nanosize determination
- 5. SEM topography
- 6. Indexing of selected area electron diffraction pattern
- 7. Image analysis of microstructures

### GE2022 TOTAL QUALITY MANAGEMENT

### UNIT I INTRODUCTION

Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of manufacturing and service quality - Basic concepts of TQM - Definition of TQM – TQM Framework - Contributions of Deming, Juran and Crosby – Barriers to TQM.

### UNIT II TQM PRINCIPLES

Leadership – Strategic quality planning, Quality statements - Customer focus – Customer orientation, Customer satisfaction, Customer complaints, Customer retention - Employee involvement – Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement – PDSA cycle, 5s, Kaizen - Supplier partnership – Partnering, Supplier selection, Supplier Rating.

### UNIT III TQM TOOLS & TECHNIQUES I

The seven traditional tools of quality – New management tools – Six-sigma: Concepts, methodology, applications to manufacturing, service sector including IT – Bench marking – Reason to bench mark, Bench marking process – FMEA – Stages, Types.

### UNIT IV TQM TOOLS & TECHNIQUES II

Quality circles – Quality Function Deployment (QFD) – Taguchi quality loss function – TPM – Concepts, improvement needs – Cost of Quality – Performance measures.

### UNIT V QUALITY SYSTEMS

Need for ISO 9000- ISO 9000-2000 Quality System – Elements, Documentation, Quality auditing- QS 9000 – ISO 14000 – Concepts, Requirements and Benefits – Case studies of TQM implementation in manufacturing and service sectors including IT.

### **TOTAL: 45 PERIODS**

### TEXT BOOK:

1. Dale H.Besterfiled, et at., "Total Quality Management", Pearson Education Asia, Third Edition, Indian Reprint (2006).

### **REFERENCES:**

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 6<sup>th</sup> Edition, South-Western (Thomson Learning), 2005.
- Oakland, J.S. "TQM Text with Cases", Butterworth Heinemann Ltd., Oxford, 3<sup>rd</sup> Edition, 2003.
- 3. Suganthi,L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd.,2006.
- 4. Janakiraman, B and Gopal, R.K, "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

9

9

9

### ML3402 COMPUTER APPLICATIONS IN MATERIALS SCIENCE

### OBJECTIVES

Computer applications have become important to solve, approximate, interpret and visualize problems in Materials Science. After reviewing the mathematical foundation, applications in Materials Science are introduced.

### UNIT I SOLUTIONS OF EQUATIONS AND INTERPOLATION

Application for the fitting and interpolation of experimental data in Materials. Science Roots of equations – Methods of bisection and false position – Newton-Raphson method – Simultaneous equations – Gauss elimination – Gauss Jordan method - Newton's and Langrange's interpolation methods.

### UNIT II PARTIAL DIFFERENTIAL EQUATIONS

Applications in diffusion and mass transport in materials.

Type of equations – Elliptic equations – Laplace's equation – Hyperbolic equations – Wave equations – The Lax method – Eulerian and Lagrangian methods - Parabolic Equations – Diffusion – The Dufort-Frankel Method – Conservative methods – The Equation of continuity – The Diffusion equations.

### UNIT III MONTE CARLO METHODS AND SIMULATION

Monte Carlo Method for simulating nucleation and growth of grains in materials. Monte Carlo – Random Number Generators – Monte-Carlo Integration – The Metropolis Algorithm – Thermodynamic Averages – Quantum Monte-Carlo – Molecular Dynamics – General Principles.

### UNIT IV MATRIX ALGEBRA

Study of anisotropy in materials.

Introduction – types of matrix– simple matrix problems – elliptic equations – Poisson's equation – systems of equations and matrix inversion – Exact Methods – Iterative Methods - The Jacobi Method – The Gauss-Seidel Method – Matrix Eigenvalue Problems – Schrödinger's equation – Full and Partial Diagonalisation - Sturm Sequence.

### UNIT V SELECTED APPLICATIONS IN MATERIALS SCIENCE

Modeling and property prediction.

### T: 45 + 15, TOTAL: 60 PERIODS

### TEXTBOOKS

- 1. Venkatraman, M. K., "Numerical Methods in Science and Engineering", National Publishing Company, Madras, 1996.
- 2. Sastry, S. S., "Introductory Methods of Numerical Analysis", Prentice Hall of India, New Delhi, 1992.

### REFERENCES

- 1. Samuel S M Wong," Computational Methods in Physics and Engineering", 2nd Edition
- 2. Wilkinson J H," The Algebraic Eigenvalue Problem", Clarendon Press Oxford, 1964.
- 3. Chandra. S., "Computer Applications in Physics: with Fortran, Basic and C", Narosa Publications 2nd edition, 2006
- 4. Brenner, D. W.," Computer Applications in Materials Science and Engineering", John Wiley & Sons, 2007
- 5. Julian, Maureen M., "Foundations of crystallography with computer applications", CRC, 1st edition, 2008
- 6. Ghosh Dastidar, P. S., "Computer Simulation of Flow and Heat Transfer", Tata McGraw Hill, New Delhi, 1998

9

9

9

9

#### ML3403 NON DESTRUCTIVE MATERIALS EVALUATION LT P C 3003

### OBJECTIVE

Study most important Non Destructive Testing methods, theory and their industrial application.

#### UNIT I INTRODUCTION TO NON DESTRUCTIVE TESTING

Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterisation. Comparison of advantages and limitations of different NDT methods. Visual inspection

### UNIT II SURFACE NDT, LIQUID PENETRANT (LT), MAGNETIC PARTICLE TESTING (MT)

PT: Physical Principals, Penetrant Systems, Applications.

MT: Magnetisation methods, evaluation of results.

#### UNIT III THERMOGRAPHY AND EDDY CURRENT TESTING (ET)

Active and Passive Thermography, Application in flaw detection.

ET: Principles, permeability and conductivity, Testing for defects, material characterisation and sorting

#### ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE) UNIT IV 10

Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction.

#### UNIT V **RADIOGRAPHY (RT)**

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, Computed Radiography, Computed Tomography

### **TEXT BOOKS**

- 1. Prakash Ravi, "Nondestructive Testing Techniques", New Age International Publishers, 1st edition, 2007
- 2. Paul E Mix, "Introduction to nondestructive testing: a training guide", Wiley, 2nd edition New Jersey, 2005

### REFERENCES

- 1. Baldev Raj, B. Venkataraman, D. J. Varde, Nerulikar, "Practical Magnetic Particle Testing", Narosa Publishing House, 2007
- 2. Charles, J. Hellier," Handbook of nondestructive evaluation", McGraw Hill, New York 2001.
- 3. ASNT, American Society for Non Destructive Testing, Columbus, Ohio, NDT Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5, Electromagnetic Testing, Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing.

8

10

10

### **TOTAL: 45 PERIODS**

### WELDING METALLURGY

### AIM

To enable students to study the process of joining by welding in detail.

### **OBJECTIVES**

Welding is one of the most important fabrication processes in industry and requires both theoretical understanding and experience of materials used in industry. This can be achieved in this course.

#### UNIT I WELDING METALLURGY PRINCIPLES

Thermal cycles in welding: basic heat transfer equations, temperature distributions and cooling curves, dependence of cooling rate on heat input, joint geometry, preheat and other factors. Comparison of welding processes based on these considerations.

### UNIT II PHYSICAL METALLURGY OF WELDING

Welding of ferrous materials: Iron - carbon diagram, TTT and CCT diagrams, effects of steel composition, formation of different microstructural zones in welded plain-carbon steels. Welding of C-Mn and low-alloy steels, phase transformations in weld and heat affected zones, cold cracking, role of hydrogen and carbon equivalent, formation of acicular ferrite and effect on weld metal toughness.

#### UNIT III WELDING OF ALLOY STEELS

Welding of stainless steels, types of stainless steels, overview of joining ferritic and martensitic types, welding of austenitic stainless steels, hot cracking, sigma phase and chromium carbide formation, ways of overcoming these difficulties, welding of cast iron.

### UNIT IV WELDING OF NON-FERROUS METALS

Welding of non-ferrous materials: Joining of aluminium, copper, nickel and titanium alloys, problems encountered and solutions.

#### UNIT V DEFECTS AND WELDABILITY

Defects in welded joints: Defects such as arc strike, porosity, undercut, slag entrapment and hot cracking, causes and remedies in each case. Joining of dissimilar materials, testing of weldability.

### TEXT BOOKS:

- 1. Linnert. G. E. "Welding Metallurgy". Vol. 1 and 2. 4th edition. A W S. USA, 1994.
- 2. Lancaster J. F. "Metallurgy of Welding", 4th Londre: George Allen & Unwin.1987.

### **REFERENCES:**

- 1. Saferian D. "The Metallurgy of Welding". Chapman and Hall, UK, 1985.
- 2. "AWS Welding Hand book", 8th edition, Vol-1, "Welding Technology", 1998.
- 3. Sindo Kuo," Welding Metallurgy", John Wiley & Sons, 2003
- 4. Henry Granjon, "Fundamentals of Welding Metallurgy", Abington Pub, 1991
- 5. Robert W. Messler, "Principles of Welding: Processes, Physics, Chemistry, and Metallurgy", Wiley, 1999.

## 9

9

9

**TOTAL: 45 PERIODS** 

### 9

ME3405

### COMPUTER AIDED SIMULATION AND ANALYSIS LABORATORY

### LIST OF EXPERIMENTS

### A. SIMULATION

MATLAB basics, Dealing with matrices, Graphing-Functions of one variable and two variables

Use of Matlab to solve simple problems in vibration and Laplace Transforms

### B. Analysis (Simple Treatment only)

- 1. Stress analysis of a plate with a circular hole.
- 2. Stress analysis of rectangular L bracket
- 3. Stress analysis of plane strain problems
- 4. Stress analysis of an axi-symmetric components
- 5. Stress analysis of beams (Cantilever, Simply supported, Fixed ends)
- 6. Mode frequency analysis of a 2 D component
- 7. Mode frequency analysis of beams (Cantilever, Simply supported, Fixed ends)
- 8. Harmonic analysis of a 2D component
- 9. Transient analysis of spring mass system
- 10. Spectrum analysis of spring mass system
- 11. Thermal stress analysis of a axisymmetric component
- 12. Conductive heat transfer analysis of a 2D component
- 13. Convective heat transfer analysis of a 2D component

**TOTAL : 45 PERIODS** 

### ML3406

### COMPREHENSION

L T P C 0 0 2 1

The objective of this comprehension is to achieve an understanding of the fundamentals of contemporary manufacturing systems including materials, manufacturing process, product and process control and quality assurance. The students work in groups and solve a variety of problems given to them. The problems given to the students should be of real life industrial problems selected by a group of faculty members of the concerned department. A minimum of three small problems have to be solved by each group of students. The evaluation is based on continuous assessment by a group of Faculty Members constituted by the professor in – charge of the course.

### **TOTAL : 30 PERIODS**

### ML3407

### MATERIALS DESIGN PROJECT

### OBJECTIVE

The main objective is to impart hands on training to the students in the fabrication of one or more component of a complete working model, which has been designed by them. The transfer of concepts studied in the Materials Science Programme to a practical application is important.

Students get familiarized in the field of material synthesis or processing, metal joining or casting or forming, or mechanical behavior of materials or material characterization or material testing and analysis. The project can also focus on the selection and optimization of materials in design of on a purely material oriented project such as the development and characterization of an alloy.

The students may be grouped in small groups and work under a project supervisor. The components to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group, which will be evaluated by a Committee which will be constituted by the Head of the Department

### TOTAL : 60 PERIODS

### ML3408

### **INDUSTRIAL/ FIELD TRAINING**

LTPC 0 0 0 1

### OBJECTIVE

This course is mandatory to gain exposure to applications in industry.

The students have to undergo practical industrial training for six weeks (during vacation at the end of VI semester) in recognized industrial establishments. At the end of the training they have to submit a report with following information: Profile of the Industry

- 1. Product range
- 2. Organization structure
- 3. Plant layout
- 4. Processes/Machines/Equipment/devices
- 5. Personnel welfare schemes
- 6. Details of the training undergo
- 7. Projects undertaken during the training, if any
- 8. Learning points.
- 9. End Semester examination will be a Viva-Voce Examination.

### **ADVANCED TOOL MATERIALS** UNIT IV

Sintered tungsten carbide tools - ISO classification - Uses of P. M and K grades cermet - ceramics, mixed and reinforced grades - cubic boron nitride - poly crystalline diamond – manufacturing techniques – properties

61

### **OBJECTIVES:**

In the project work the students demonstrate their ability to apply knowledge studied during the course. Students show their ability to collect information from literature, design, perform and interpret experiments. The successful project work is documented in a formal project report and technical presentation.

PROJECT WORK

A project topic must be selected either from published lists or the students themselves may propose suitable topics in consultation with their guides. The aim of

the project work is to deepen comprehension of the principles by applying them to a new problem which may be the design and manufacture of a device, a research investigation, a computer or management project or design problem. The problem may be selected in areas of material synthesis or processing, material characterization, material joining, metal forming or casting or mechanical behaviour of materials or material testing and analysis.

The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department.

A project report is required at the end of the semester. The project work is evaluated jointly by external and internal examiners constituted by the Head of the Department based on oral presentation and the project report.

| ML3001 | METALLURGY OF TOOL MATERIALS | LTPC |
|--------|------------------------------|------|
|        |                              |      |

### OBJECTIVE

Tooling materials require special considerations in production and application. Students will learn the metallurgical processes and applications in producing toolings.

UNIT I **CLASSIFICATION AND MANUFACTURE OF TOOL STEELS** 

Classification - AISI system, production techniques - problems in melting - powder metallurgy route, Refining methods like VAR and ESR - forming of tool steels.

#### UNIT II HEAT TREATMENT OF TOOL STEELS

Spheroidising – selection of quenching and tempering parameters – precautions - Effect of retained austenite - Multiple tempering, sub-zero treatment and cryo treatment surface treatments - defects in tool steels - Over heated and burnt structures -Decarburization.

#### **PROPERTIES AND TESTING OF TOOL STEELS** UNIT III

Mechanical propertiess of tool steels, strength, hardness and toughness – properties at elevated temperature - microstructure - distribution of carbides - coating thickness micro hardness - adhesion and scratch resistance

3 0 0 3

10

8

10

### UNIT V SURFACE TREATMENTS AND COATINGS

Sulphidising of tool steels – TiN coating by PVD – coating of carbide tools – mono and multi layer coatings of TiC, TiN, Alumina and DLC by PVD and CVD processes selection of tool materials

### **TOTAL: 45 PERIODS**

7

### **TEXT BOOK**

1. Payson, Peter, "Metallurgy of Tool Steels", John Wiley and Sons, New York, 1962.

### REFERENCES

- 1. Robert Wilson, "Metallurgy and Heat Treatment of Tool Steels", McGraw-Hill, New York, 1975
- 2. Roberts, Haymaker and Johnson, "Tool Steels", 3rd edition, ASM, 1962.
- 3. Joseph R. Davis," Tool Materials", ASM International, 1995

#### LTPC ML3002 PHYSICAL METALLURGY OF FERROUS AND ALUMINUM ALLOYS 3003

### OBJECTIVES

Students of Materials Science and Engineering are offered an in depth study of the physical metallurgy of ferrous and aluminum alloys.

#### UNIT I PHASE TRANSFORMATION

Basics of thermodynamics, kinetics and diffusion mechanisms.

### UNIT II DIFFUSION CONTROLLED PHASE TRANSFORMATION

Nucleation and growth - Types of nucleation - Concept of free energy during solidification - Thermodynamics of homogeneous nucleation - critical nucleus size and critical free energy change - constitutional supercooling - Extension to heterogeneous nucleation - Nucleation rate and growth rate - overall transformation rate. Concept of Activation energy - Arrhenius equation - Johnson Mehl - Avrami equation. Pearlitic transformations.

#### UNIT III DIFFUSIONLESS TRANSFORMATIONS

Martensite transformation - Definition - characteristic features of Martensitic transformation in steels - morphology of Martensite - lath and acicular martensite -Crystallography of martensitic transformation - Martensite in non-ferrous systems -Thermoelastic martensite - Shape Memory effect - Examples and applications of shape memory alloys.

### UNIT IV **PRECIPITATION REACTIONS**

Precipitation from solid solutions, thermodynamic considerations, structure and property during ageing, sequence of ageing, formation of G-P zones and intermediate precipitates, theories of precipitation hardening, effect of time, temperature and allov compositions, precipitation free zones, crystallographic aspects of transformation, coarsening kinetics.

### UNIT V ANNEALING

Cold working and hot working. Recovery - polygonization and dislocation movements in polygonization. Recrystallisation - effect of time, temperature, strain and other variables,

8

10

10

## 7

mechanism of nucleation and growth. Grain growth – Grain growth law, geometrical collisions, preferred orientation, secondary recrystallisation.

### TOTAL: 45 PERIODS

### **TEXT BOOKS:**

- 1. Raghavan. V., "Phase Transformations", Prentice Hall of India, New Delhi, 2007.
- 2. Romesh C. Sharma, "Phase transformation in Materials", CBS Publishers & Distributors, New Delhi, 2002.

### **REFERENCES**:

- 1. Reed Hill. R. E. "Physical Metallurgy Principles", Affiliated East West Press. New Delhi. 1992.
- 2. Thomas H. Courtney, "Mechanical Behaviour of Materials", McGraw-Hill Co., NY. 1990.
- 3. George E. Totten and D. Scott MacKenzie," Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes", CRC; 1 edition, 2003.
- 4. Anil Sinha, "Physical Metallurgy Handbook", McGraw-Hill Professional; 1 edition, 2002.
- 5. William F. Hosford, "Physical Metallurgy, materials engineering series", Vol. 26, Taylor & Francis CRC Press, 2005.

### MA2264

### NUMERICAL METHODS

### L T P C 3 1 0 4

### AIM

With the present development of the computer technology, it is necessary to develop efficient algorithms for solving problems in science, engineering and technology. This course gives a complete procedure for solving different kinds of problems occur in engineering numerically.

### OBJECTIVES

- At the end of the course, the students would be acquainted with the basic concepts in numerical methods and their uses are summarized as follows:
- The roots of nonlinear (algebraic or transcendental) equations, solutions of large system of linear equations and eigen value problem of a matrix can be obtained numerically where analytical methods fail to give solution.
- When huge amounts of experimental data are involved, the methods discussed on interpolation will be useful in constructing approximate polynomial to represent the data and to find the intermediate values.
- The numerical differentiation and integration find application when the function in the analytical form is too complicated or the huge amounts of data are given such as series of measurements, observations or some other empirical information.
- Since many physical laws are couched in terms of rate of change of one/two or more independent variables, most of the engineering problems are characterized in the form of either nonlinear ordinary differential equations or partial differential equations. The methods introduced in the solution of ordinary differential equations and partial differential equations will be useful in attempting any engineering problem.

### UNIT I SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

Solution of equation –Fixed point iteration: x=g(x) method - Newton's method – Solution of linear system by Gaussian elimination and Gauss-Jordon method – Iterative method - Gauss-Seidel method - Inverse of a matrix by Gauss Jordon method – Eigen value of a matrix by power method and by Jacobi method for symmetric matrix.

### UNIT II INTERPOLATION AND APPROXIMATION

Lagrangian Polynomials – Divided differences – Interpolating with a cubic spline – Newton's forward and backward difference formulas.

### UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION

Differentiation using interpolation formulae –Numerical integration by trapezoidal and Simpson's 1/3 and 3/8 rules – Romberg's method – Two and Three point Gaussian quadrature formulae – Double integrals using trapezoidal and Simpsons's rules.

# UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

Single step methods: Taylor series method – Euler method for first order equation – Fourth order Runge – Kutta method for solving first and second order equations – Multistep methods: Milne's and Adam's predictor and corrector methods.

# UNIT V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

Finite difference solution of second order ordinary differential equation – Finite difference solution of one dimensional heat equation by explicit and implicit methods – One dimensional wave equation and two dimensional Laplace and Poisson equations.

### L = 45 , T = 15, TOTAL: 60 PERIODS

### TEXT BOOKS

- 1. Veerarjan, T and Ramachandran, T. 'Numerical methods with programming in 'C' Second Editiion, Tata McGraw-Hill Publishing.Co.Ltd. (2007).
- 2. Sankara Rao K, 'Numerical Methods for Scientisits and Engineers' 3<sup>rd</sup> editiion Printice Hall of India Private Ltd, New Delhi, (2007).

### REFERENCES

- 1. Chapra, S. C and Canale, R. P. "Numerical Methods for Engineers", 5<sup>th</sup> Edition, Tata McGraw-Hill, New Delhi, 2007.
- 2. Gerald, C. F. and Wheatley, P.O., "Applied Numerical Analysis", 6<sup>th</sup> Edition, Pearson Education Asia, New Delhi, 2006.
- 3. Grewal, B.S. and Grewal, J.S., "Numerical methods in Engineering and Science", 6<sup>th</sup> Edition, Khanna Publishers, New Delhi, 2004

9

9

9

9

65

ML3020

### OBJECTIVE

Students are to learn about metal cutting operations from the theoretical and practical perspective.

### UNIT I CUTTING TOOL NOMENCLATURE

Single point tool-significance of the various angles - Machine reference system- normal tool reference system- ORS – interrelation between different tool nomenclatures - Nomenclature of drills, milling cutters and broaches

## UNIT II CHIP FORMATION MECHANISM AND FORCES IN MACHINING 10

Orthogonal and oblique cutting - Mechanisms of formation of chips-types of chips -Merchant's circle diagram-Force and Velocity relationship, shear plane angle, Energy considerations in matching-Ernst Merchant's theory of shear angle relationship - Forces in turning, drilling, milling and grinding- specific cutting pressure-specific horse powerconstruction and principle of operation of tool dynamometers for turning, drilling and milling.

**UNIT III THERMAL ASPECTS IN MACHINING, TOOL WEAR AND TOOL LIFE** 10 Sources of heat generation in machining heat in PSDZ and SDZ – heat flow in cutting tools temperature measurement techniques in machining, Functions of cutting fluid characteristics of cutting fluid-types - application of cutting fluids - Tool wear, type of tool failure - mechanisms, tool life equation- tool life analysis - machinability - chatter in machining.

### UNIT IV CUTTING TOOL MATERIALS

Requirements of tool materials-properties of HSS - advances in tool materials- carbides and coated carbides, ceramic, cermets, CBN, Diamond, PCD - ISO-specifications for inserts and tool holders - -Need for chip breakers – types of chip breakers

### UNIT V MODELING OF METAL CUTTING

Introduction to modeling – empirical models – mechanistic models – FEA based models – artificial intelligence based models for turning, milling and drilling

### TOTAL: 45 PERIODS

### **REFERENCES:**

- 1. Edward M. Trent and Paul K. Wright "Metal Cutting" Butterworth-Heinemann; 4th edition 2000.
- 2. Boothroyd, G., "Fundamentals of Metal Machining and Machine Tools", McGraw-Hill Co., 1975.
- 3. Sadasiavm, T.A. and Sarathy, D., "Cutting tools for productive machining" WIDIA India limited, Bangalore, 1999.
- 4. Milton C. Shaw," Metal Cutting Principles", Oxford University Press, 2nd edition 2004

### 9

## 8

## GE2025 PROFESSIONAL ETHICS IN ENGINEERING

### UNIT I ENGINEERING ETHICS

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Professions and Professionalism – Professional Ideals and Virtues – Uses of Ethical Theories

### UNIT II ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Engineers as responsible Experimenters – Research Ethics - Codes of Ethics – Industrial Standards - A Balanced Outlook on Law – The Challenger Case Study

### UNIT III ENGINEER'S RESPONSIBILITY FOR SAFETY

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis – Reducing Risk – The Government Regulator's Approach to Risk - Chernobyl Case Studies and Bhopal

### UNIT IV RESPONSIBILITIES AND RIGHTS

Collegiality and Loyalty – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) - Discrimination

### UNIT V GLOBAL ISSUES

Multinational Corporations – Business Ethics - Environmental Ethics – Computer Ethics -Role in Technological Development – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Honesty – Moral Leadership – Sample Code of Conduct

### **TOTAL: 45 PERIODS**

### TEXT BOOKS:

- 1. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York, 2005.
- 2. Charles E Harris, Michael S Pritchard and Michael J Rabins, "Engineering Ethics Concepts and Cases", Thompson Learning, 2000.

### **REFERENCES**:

- 1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, 1999.
- 2. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, 2003
- 3. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, 2001.
- 4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics An Indian Perspective", Biztantra, New Delhi, 2004.
- 5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003)

9

9

9

LTPC 3003

> 9 i+v

### MF3304

### AIM:

To impart knowledge in the theoretical principles of Computer Aided Design

### **OBJECTIVE:**

To familiarize the student with computer hardware and peripheral Devices, mathematics of computer graphics, geometric modeling, CAD standards And to impart fundamental knowledge in Finite Element Analysis

COMPUTER AIDED DESIGN

#### UNIT I INTRODUCTION

Product Cycle – Design Process – CAD Hardware – Mainframe, Mini, Workstation and Micro computer Based Systems, Input and Output Devices - Software - Operating System, Geometric Modeling capabilities – hardware Integration and Networking.

#### UNIT II **COMPUTER GRAPHICS**

Two dimensional transformations – Transformation of Straight Lines – Rotation – Reflection - Scaling - Combined Transformations - Translations and homogeneous co ordinates - Three dimensional transformations - Scaling - Rotation - Reflection -Translation – Projections – Orthographic and Isometric Projections – Clipping – Hidden Line and Surface Removal.

#### UNIT III **GEOMETRIC MODELLING**

Geometrical Modeling - wire frame, models - entities - surface models - entities - solid models – Entities – Boundary Representation (B-Rep) – Constructive Solid Geometric (CSG) - Sweep and Analytical Solid Modeling.

#### UNIT IV CAD STANDARDS

Graphical Kernel System (GKS) Programmers Hierarchical Interface for Graphics (PHIGS), Initial Graphics Exchange Specification (IGES), Standard for Exchange of product Model Data (STEP), Drawing Exchange Format (DXF), Dimensional Measurement Interface Specification (DMIS) - Introduction to Drafting and Modeling Systems.

#### UNIT V FINITE ELEMENT ANALYSIS

Introduction – Procedures – Element types – Nodal approximation – Element matrices, vectors and equations - Global connectivity - Assembly - Boundary conditions -Solutions techniques – Interfaces to CAD – Introduction to packages, Case Studies – Applications.

### TEXT BOOKS

- 1. Ibrahim Zeid, "CAD-CAM Theory and Practice", Tata McGraw Hill Publishing Co.Ltd., 1991
- 2. D.F.Rogers and J.A.Adams, "Mathematical Elements in Computer Graphics", McGraw–Hill Book Company, New York, 1976.

### REFERENCES

- 1. P.Radhakrishnan and C.P.Kothandaraman, "Computer Graphics and Design", Dhanpat Rai and Sons, New Delhi, 1991.
- 2. E.Dieter George, "Engineering Design", McGraw-Hill International Edition, 1991.
- 3. P.Radhakrishnan and S.Subramanyam, "CAD/CAM/CIM", Wiley Eastern Ltd., New Age International Ltd., 1994.

# 9

### **TOTAL: 45 PERIODS**

3003

5

9

LT PC

11

### ML3003

OBJECTIVE

AUTOMOTIVE MATERIALS

The students study the processes and special requirements of the Automotive Industry.

### UNIT I PROPERTIES OF MATERIALS

Technologically important properties of materials, Physical, Chemical, Mechanical and Electrical properties of metals, Criteria of selection of materials like properties, cost, manufacturing process, availability, legal and safety factors.

### UNIT II MATERIALS FOR CORROSION AND WEAR RESISTANCE

Materials for atmospheric, soil, water, acid and alkaline resistance, Corrosion prevention coatings, material for Chemical and Petroleum industries, materials and coatings for wear resistance.

### UNIT III MATERIALS FOR HIGH AND LOW TEMPERATURES

High temperature strength and stability, Hot hardness requirements, High temperature steels and super alloys, ductile to brittle transition-HSLA steel, low temperature materials.

### UNIT IV MATERIALS FOR AUTOMOTIVE INDUSTRY

Materials for engine components, cylinder block, head, Liner, piston, ring, pin, connecting rod, crank shaft, exhaust, cam shaft, rocker arm and tappet, etc. Materials for chasis

### UNIT V NEW MATERIALS

New Materials and processes Rheology, Recycling requirements.

### TOTAL: 45 PERIODS

### TEXT BOOKS

- 1. Gladius Lewis, "Selection of Engineering Materials", Prentice Hall Inc. New Jersey USA, 1995.
- 2. Charles J A and Crane. F A.A., "Selection and Use of Engineering Materials", 3<sup>rd</sup> Edition, Butterworth's, London UK, 1996.

### REFERENCES

- 1. James A. Jacobs, Thomas F. Kilduff., "Engineering Materials Technology: Structure, Processing, Properties & Selection", Prentice Hall, USA, 1996.
- 2. ASM Handbook, "Selection of Materials Vol. 1 and 2", ASM Metals Park, Ohio. USA, 1991.
- 3. Daniel P. Henkel, Alan Pense., "Structure and Properties of Engineering Materials", 5<sup>th</sup> edn., McGraw-Hill Book Co., New York, USA, 2001.
- 4. ASM Handbook. "Materials Selection and Design", Vol.20- ASM Metals Park Ohio. USA, 1997.
- 5. Murthy, V.S.R., Jena, A.K., Gupta, K.P. and Murthy, G.S., "Structure and Properties of Engineering Materials", Tata McGraw-Hill, New Delhi, 2003.
- 6. Cantor," Automotive Engineering: Lightweight, Functional, and Novel Materials", Taylor & Francis Group, London, 2006.

8

8

10

9

### **BIOMEDICAL MATERIALS**

### OBJECTIVES

ML3004

Students are learning medical and biomedical applications of materials. Biocompatibility

#### **BIOLOGICAL PERFORMANCE OF MATERIALS** UNIT I

Biofunctionality and biocompatibility - material response - deformation and failure friction and wear -Host response-Inflammatory process-capsule formation coagulationand hemolysis - approach to thromboresistant material developmentchemical and foreign body carcinogenesis.

#### UNIT II **ORTHOPAEDIC MATERIALS**

Materials for bone and joint replacement-cemented and cementless total joint replacement- metals and alloys; stainless steel, cobalt based alloys, titanium based materials -ceramics - bioinert ceramics -carbon, alumina, zircona and titania -bioactive ceramics -bioactive glass and glass ceramics, calcium phosphate ceramics - polymers, grouting materials – PMMA bone cement, articulating component–UHMWPE composites, matrix and filler components -mechanical properties.

#### DENTAL AND CARDIOVASCULAR MATERIALS UNIT III

Dental restorative materials - dental cements - zinc oxide and phosphate cements -Dental composite materials - polymer/ceramic composites - composite component, polymerization, properties – glass isomer cements

cement components; setting reaction, structure and properties

dental amalgams: composition, microstructure, physical properties degradation and process cardiovascular prostheses: vascular -graft materials, cardiac valve Prostheses, cardiac assist devices and cardiac pacemakers.

#### UNIT IV **ARTIFICIAL ORGANS AND OTHER MATERIALS**

Artificial kidney and urological prostheses ~Blood-gas exchangers - artificial pancreas structure and use of collagen -material for skin and nerve regeneration -collagen/GAG graftcopolymers -tissue adhesives-fibrin and cyanoacryllc tissue adhesives-materials for Ophthalmology - contact lens and intraocular lens materials-materials for drug delivery.

#### UNIT V MATERIALS CHARACTERIZATION TECHNIQUES

Electron microscopic methods - SEM, TEM, spectroscopic methods -IR; visible, UV and x-ray methods, differential thermal analysis, differential thermogravimetric analysis, NDTmethods.

### TEXT BOOKS

- 1. Sujata V., Bhat., "Biomaterials", Narosa Publication House, New Delhi, 2002
- 2. Ratner, B.D., Hoffman, A. S., Sckoen, F.J. and Emons, J.E.L. (Eds), "Biomaterials Science. An Introduction to Materials in Medicine". Academic Press, second edition. 2004.

### REFERENCES

- 1. Jonathan Black," Biological Performance of materials, Fundamentals of Biocompatibility", Marcel Dekker Ind., New, York, 1992.
- 2. Williams, D. F., (editor)," Material Science and Technology -A comprehensive treatment", Vol. 14, Medical and Dental Materials, VCH Publishers Inc.; New York, 1992.
- 3. Davis, J. R.," Handbook of Materials for Medical Devices", ASM international, 2003.

9

9

9

# 9

**TOTAL: 45 PERIODS** 

### 70

#### ELECTRON MICROSCOPY AND DIFFRACTION LTPC 3 0 0 3 ANALYSIS OF MATERIALS

### OBJECTIVE

ML3006

The study of microstructure and microscopic properties are important tools for the understanding of material behaviour. This course covers, crystal structure, X-Ray methods and spectroscopy as well as scanning and transmission electron microscopy.

#### UNIT I CRYSTALLOGRAPHY

Symmetry elements, operations - translational symmetries - point groups - space groups - close packed structures - voids - important crystal structures - defects in crystals - polymorphism and twinning - polarizing microscope and uses.

#### UNIT II DIFFRACTION AND CHARACTERISTICS X-RAYS

X-ray generation, properties – sealed tube, rotating anode, synchrotron radiation – absorption – filters and monochromators. Atomic scattering factor. Fourier transformation and structure factor – anomalous dispersion – Bragg's law – reciprocal lattice concept – Laue conditions – Ewald and limiting spheres – diffraction symmetry.

### SINGLE CRYSTAL DIFFRACTION UNIT III

Laue, rotation / oscillation methods - interpretation of diffraction patterns - cell parameter determination – indexing – Powder diffraction: Debye method – uses. Single crystal X-ray diffractometer – double crystal X-ray diffractometer – Triple and four crystal X-ray diffractometer. X-ray topography – Neutron diffraction.

### UNIT IV SPECTROSCOPY

Principles and instrumentation for X-ray photoelectron spectroscopy (XPS), Auger Electron spectroscopy (AES) and Secondary ion mass spectroscopy (SIJMS) - proton induced X-ray Emission spectroscopy (PIXE)

### UNIT V OPTICAL METHODS AND ELECTRON MICROSCOPY

Principles of SEM – instrumentation and working of SEM – Transmission Electron Microscope (TEM) - Scanning transmission Electron Microscope (STEM) - principles, instrumentation and working of Atomic force microscope (AFM) – Photoluminescence – time resolved photoluminescence spectroscopy

### TEXT BOOKS

- 1. Lawrence E. Murr, "Electron and ion microscopy and microanalysis principles and applications", Marcel Dekker Inc. New York 1991.
- 2. Cullity, B. D., "Elements of X-ray diffraction", Addison-Wesley Company Inc., New York. 3rd Edition. 2000.

### REFERENCES

- 1. Belk, J. A, "Electron microscopy and microanalysis of crystalline materials", Applied Science Publishers, London, 1979.
- 2. Azaroff, L. V., "Elements of X-ray Crystallography", McGraw Hill NY, 1968.

# 10

7

9

9

### 10

**TOTAL: 45 PERIODS** 

### ML3010 FUELS, FURNACES AND REFACTORIES

### **OBJECTIVES**

Many industries require process heat in the production and treatment of materials. This course teaches fundamentals and applications of fuels, furnaces and refractories.

#### UNIT I FUNDAMENTALS

Thermal Energy, conversion. Heat Transfer, conduction, radiation, convection. Thermoelectric effect. thermocouples, Peltier effect. Temperature measurement.

#### UNIT II **FUELS**

Thermal Energy conversion. Fossil fuels, availability, deposits, calorific content. Nuclear Fuels, Solar and geothermal heating.

#### UNIT III **FURNACES**

Firing, electric Resistance, Radiation, Induction. Temperature control - PID. Multi zone furnaces. Batch and tunnel furnaces.

#### UNIT IV REFRACTORIES

Heat resistant materials in steel making and non ferrous production plants. Applications in the power, energy conversion, petroleum and chemical industries.

#### UNIT V **ADVANCED ISSUES**

Energy and Environment, Environmental optimization, Recycling of thermal energy. Emissions control.

### TOTAL: 45 PERIODS

### TEXT BOOKS:

- 1. Gupta. O. P., "Elements of Fuels, Furnaces and Refractories", 4th edition, Khanna Publishers, New Delhi, 2000.
- 2. Nandi, D. N., "Handbook on Refractories", Tata McGraw-Hill, 1987.

### **REFERENCES:**

- 1. Yeshvant V. Deshmukh," Industrial Heating: Principles, Techniques, Materials, Applications, and Design", CRC Press, 2005
- 2. Gilchrist, J. D., "Fuels, Furnaces and Refractories", Pergamon Press, 1977.
- 3. Nandi, D. N., "Handbook on Refractories" Tata McGraw-Hill Publishing Co. Ltd., New Delhi, India.

# 9

9

9

9

# ME2024 INDUSTRIAL TRIBOLOGY

### UNIT I SURFACES AND FRICTION

Topography of Engineering surfaces- Contact between surfaces - Sources of sliding Friction – Adhesion-Ploughing- Energy dissipation mechanisms Friction Characteristics of metals - Friction of non metals. Friction of lamellar solids - friction of Ceramic materials and polymers - Rolling Friction - Source of Rolling Friction – Stick slip motion - Measurement of Friction.

### UNIT II WEAR

Types of wear - Simple theory of Sliding Wear Mechanism of sliding wear of metals - Abrasive wear – Materials for Adhesive and Abrasive wear situations - Corrosive wear - Surface Fatigue wear situations - Brittle Fracture - wear - Wear of Ceramics and Polymers - Wear Measurements.

### UNIT III LUBRICANTS AND LUBRICATION TYPES

Types and properties of Lubricants - Testing methods - Hydrodynamic Lubrication – Elasto-hydrodynamic lubrication- Boundary Lubrication - Solid Lubrication- Hydrostatic Lubrication.

### UNIT IV FILM LUBRICATION THEORY

Fluid film in simple shear - Viscous flow between very close parallel plates - Shear stress variation Reynolds Equation for film Lubrication - High speed unloaded journal bearings - Loaded journal bearings - Reaction torque on the bearings - Virtual Co-efficient of friction - The Sommerfield diagram.

**UNIT V SURFACE ENGINEERING AND MATERIALS FOR BEARINGS 9** Surface modifications - Transformation Hardening, surface fusion - Thermo chemical processes – Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase processes - Materials for rolling Element bearings - Materials for fluid film bearings - Materials for marginally lubricated and dry bearings.

### **TOTAL : 45 PERIODS**

### TEXT BOOK:

1. A.Harnoy "Bearing Design in Machinery "Marcel Dekker Inc, New York, 2003

### **REFERENCES:**

- 1. M.M.Khonsari & E.R.Booser, "Applied Tribology", John Willey & Sons, New York, 2001
- 2. E.P.Bowden and Tabor.D., " Friction and Lubrication ", Heinemann EducationalBooks Ltd., 1974.
- 3. A.Cameron, "Basic Lubrication theory ", Longman, U.K., 1981.
- 4. M.J.Neale (Editor), " Tribology Handbook ", Newnes. Butterworth-Heinemann, U.K., 1995.

9

9

### ML3013 MICRO AND NANOMECHANICAL PROPERTIES OF LT P C MATERIALS 3 0 0 3

### OBJECTIVES

Many materials have different properties on a micro and nano scale as compared to bulk material. This difference and special properties only relevant to nano scale material are elaborated on in this course and should be mastered by the students.

### UNIT I INTRODUCTION

Overview of the composition, structure, chemical and mechanical properties of surfaces and how these properties affect mechanical and tribological properties of surfaces.

### UNIT II MICROMECHANICS

Multiscale interactions between surfaces; fractal nature of surface topography; interfacial forces, adhesion, and principles of micromechanics; techniques for surface characterization.

### UNIT III DEFORMATION MECHANISMS

Stress and strain of material; Elastic deformation: Young's modulus, Poisson's ratio, stress-strain relation, stiffness/compliance matrix; Dislocations: Edge/screw/mixed dislocation, burgers vectors, twining, stress field of dislocation, dislocation interaction; Plastic deformation of single and polycrystalline materials: Schmid's law, plastic flow; Inelastic deformation: Viscosity, deformation of inorganic glasses, deformation of nanocrystalline and crystalline polymers; Mechanical fracture: ductile and brittle facture, creep, fatigue;

### UNIT IV TESTING METHODS

Various Testing methods - Experimental determination of Mechanical Properties –Types of Hardness testing of Metals and Strength of Metals, Polymers, Ceramics and Composites.

### UNIT V NANOMECHANICAL PROPERTIES

Determination of surface mechanical properties (AFM/nanoindentation), simple friction theories - effects of surface composition and structure on friction, environmental and temperature effects, relationship with surface chemistry, mixed and boundary lubrication, failure mechanisms

### **REFERENCES**:

- 1. Ashby M. F. and Jones DRH (1998) Engineering Materials 1, An Introduction to Their Properties and Applications, Second Edition. Butter worth Heinemann.
- 2. Bharat Bhushan (ed.) Handbook of Nanotechnology, Springer, 2004.

10

**TOTAL: 45 PERIODS** 

5

5

5

### ALLOY CASTING PROCESSES

### OBJECTIVE

ML3014

The casting of metals is the focus of this course and covers not only steels, but also light metals like Magnesium and Aluminum. The casting of Zinc and Copper alloys is also treated in detail.

#### UNIT I MAGNESIUM ALLOYS

Introduction to different types of Magnesium alloys - Process for Manufacturing Magnesium alloys - Production considerations - Die casting consideration - die life productivity – applications of Magnesium alloy cast parts.

#### UNIT II **ALUMINIUM ALLOYS**

Introduction to different types of Aluminum alloys – Process for Manufacturing Aluminum alloys - Production considerations - die life - productivity - applications of Aluminum Cast Parts.

### UNIT III **ALLOY STEELS**

Introduction to different types of Alloy steels - process for manufacturing alloy steels production considerations – productivity – applications of alloy cast parts.

### UNIT IV **ZINC ALLOYS**

Introduction to different types of Zinc alloys - process for manufacturing Zinc alloys production considerations - Die casting considerations - die life - productivity applications of Zinc alloys cast parts.

#### UNIT V **COPPER ALLOYS**

Introduction to different types of copper alloys. Process for manufacturing copper alloys production considerations. Die casting considerations - die life - productivity applications of copper alloys cast parts.

### **TEXT BOOKS:**

- 1. Jain, P. L., "Principles of Foundry Technology", Tata McGraw Hill, 1994.
- 2. Heine, R. W, Loper, C. R. and Rosenthal, "Principles of Metal Casting", Tata McGraw Hill, New Delhi, 1995.

### **REFERENCES:**

- 1. ASM Hand Book Vol. 5 Casting, ASM International, 1998.
- 2. Ramana Rao, T. V., "Metal Casting Principles and Practice", 1st edition, New Age International, 1996.
- 3. Houldcorft, P. T., "Welding process technology", Cambridge University Press, 1985.

# 8

LTPC 30 0 3

8

10

### 9

TOTAL: 45 PERIODS

### ML3015 **ROLLING AND FORGING TECHNOLOGY**

### OBJECTIVES

This course deals with the bulk forming processes in rolling and forging operations. Students should learn the foundations to be able to apply this knowledge in industrial environments.

#### UNIT I **BULK AND DEFORMATION PROCESS**

Characteristics - applications of Bulk Deformation Process, Deformation mechanics -Material requirements – Friction in bulk deformation, environmental factors.

#### **ROLLING PROCESS** UNIT II

Types of rolling – Advantages and applications – Hot rolling – cold rolling – Equipment based – Mechanics of flat rolling – roll pressure distribution – roll forces and power – effect of friction - vibration and chatter in rolling.

### UNIT III SPECIAL ROLLING PROCESS

Shape rolling - Thread and gear rolling - tube rolling - rotary tube piercing - cold swaging - defects in rolling.

### UNIT IV HOT FORGING PROCESS

Types of forging – forging operations – Equipments used – Hydraulic, Mechanical and screw press - drop hammers - Press characteristics - Force and Work of deformation – deformation zone geometry – forging cylindrical work piece – forces and power – staging making typical forged components – die material.

#### UNIT V **COLD FORGING**

Advantages and application - forgability of materials test - upsetting and hot twist test -Material for Cold forging – Special forming process – Precision forging – Cold heading – Hubbing – Warm forging.

# **TOTAL: 45 PERIODS**

### **TEXT BOOKS:**

- 1. Dieter, G. E., "Mechanical Metallurgy", McGraw-Hill Co., SI Edition, 1995.
- 2. Nagpal, G. R., "Metal Forming Processes", Khanna Pub., New Delhi, 2000.
- 3. Surendrakumar, "Technology of Metal Forming process", PHI, New Delhi 2008.

### **REFERENCES:**

- 1. Kalpakjain and Scheroid, "Manufacturing Processes for engineering materials", Pearson education, 4th edition, 2003
- 2. Altar, Nagile and Sher," Cold and Hot forging", Materials Park, Ohio, 2005.
- 3. Roy A. Lindberg," Processes and Materials of Manufacture", Prentice Hall of India Pvt. Ltd. 2003.

LTPC 3 0 0 3

9

# 9

9

### 9

atudant will be able t

- Upon completion of this subject, student will be able to:
  Understand principle of micro systems and feed back systems
- Know the different methods of microfabrication.
- Understand the properties and microstructure of materials
- Appreciate Integration processes in detail
- Enhance the knowledge in semiconductor manufacturing processes.

### UNIT I INTRODUCTION

Introduction to Micro System design, Material properties, micro fabrication technologies. Structural behavior, sensing methods, micro scale transport - feed back systems.

### UNIT II MICROMECHANICS

Microstructure of materials, its connection to molecular structure and its consequences on macroscopic properties – Phase transformations in crystalline solids including martensite, ferroelectric, and diffusional phase transformations, twinning and domain patterns, smart materials

### UNIT III BASIC MICRO-FABRICATION

Bulk Processes – Surface Processes – Sacrificial Processes and Bonding Processes– Special machining: Laser beam micro machining – Electrical Discharge Machining – Ultrasonic Machining – Electro chemical Machining. Electron beam machining.

### UNIT IV MECHANICAL MICROMACHINING

Theory of micromachining – Chip formation – Size effect in micromachining – microturning, micromilling, microdrilling - Micromachining tool design – Precision Grinding – Partial ductile mode grinding – Ultraprecision grinding – Binderless wheel – Free form optics.

### UNIT V SEMI CONDUCTORS MANUFACTURING

Basic requirements - clean room – yield model – Wafer IC manufacturing – feature micro fabrication technologies – PSM – IC industry – New Materials – Bonding and layer transfer – devices – micro fabrication industries.

### **TOTAL : 45 PERIODS**

### TEXT BOOK:

1. Sami Franssile, "Introduction to Micro Fabrication", John Wiley & Sons Ltd., UK, 2004

### **REFERENCES:**

- 1. Madore Mar J., "Fundamental of Micro Fabrication", CRC Press, 2002
- 2. Robert W Johnstone and Ash Parmaswaran, "An Introduction to Surfacemicromachining", Springer, 1st edition, 2004.
- 3. Rai Choudhury, P., "Handbook of Microlithography, Micromachining, and Microfabrication". Volume 2: Micromachining and Microfabrication, SPIE-International Society for Optical Engine, 1997.

### MICRO MACHINING PROCESSES

The purpose of this subject is understand the principles of various micro fabrication

### 8

### 10

ME3016

processes.

**OBJECTIVES** 

AIM

8

9

LTPC 3003

### ML3005 CERAMICS AND REFACTORY MATERIALS

### OBJECTIVE

In this course the structure and properties of ceramics, classes and refractory materials is studied in detail.

### UNIT I FUNDAMENTALS

Ceramic crystal structures. NaCl, CsCl, Al2O3 Phase diagram SiO2 – K2O – Al2O3. Classifications by application (density, porosity), composition (oxides, carbides, nitrides), properties

### UNIT II RAW MATERIALS AND CHARACTERIZATION

Mineralogy, Phase analysis, powder classification

### UNIT III GLASS

Silica-soda-lime glasses. Structure, composition, raw materials, furnaces, melting reactions, production routes, Products (flat, containers), optical glass, optical fibers

### UNIT IV CERAMICS

Requirements of tool materials-properties of HSS - advances in tool materials- carbides and coated carbides, ceramic, cermets, CBN, Diamond, PCD - ISO-specifications for inserts and tool holders - -Need for chip breakers – types of chip breakers

### UNIT V ADVANCED CERAMICS

Applications in structural (ICE, gas turbines, cutting tools), bioceramics (implants), electrical (insulators, substrates, piezoceramics), ceramic coatings (thermal barriers), nuclear (cermets), process (filters, catalyst)

### **TOTAL : 45 PERIODS**

### TEXT BOOK

1. Kingery, W. D., H. K. Bowen and D. R. Uhlmann, "Introduction to Ceramics", 2nd Edition, John Wiley and Sons, New York, 1976.

### REFERENCES

- 1. Barsoum," Fundamentals of Ceramics", CRC Press, 1997.
- 2. Yet-Ming Chiang, Dunbar P Birnie and W David Kingery," Physical ceramics: principles for ceramic science and engineering", NY: John Wiley, 1997.
- 3. Kumar, S. (editor) "Hand Book of Ceramics" Vol. 1 4; Kumar & Associates, Calcutta, India, 1994.

9

LT P C 3 0 0 3

**9** 

9

9

78

## ML3009 EXPERIMENTAL TECHNIQUES IN MACHINING

### OBJECTIVES

Students should master the foundation and applications of experimental mechanics which is important for all machining operations.

### UNIT I INTRODUCTION

Tool materials – high carbons steel – satellite sintered carbides – ceramics – DM-HSS tools carbide tools – Diamond – tool life estimation tool wear – machinability

### UNIT II TOOL WEAR EVALUATION

Profile projector- optical section microscope surface layer – Single pan balance – Isotope selection and manufacture – Beta – Gamma radiation in carbide and HSS tools – Auto radiographic studies – Micro Isotopes for tool wear.

### UNIT III TECHNIQUES FOR STUDYING COMPOSITION AND STRUCTURE 10

Electron probe micro analyzer (EPMA) – Scanning micro analyser, secondary ion emission micro analyzer – Augar electron spectrography (AES). X-ray diffraction – crystallite size – evaluation of residual stresses - work hardening by sub-surface metallurgy.

### UNIT IV MEASUREMENT OF CUTTING FORCE AND DYNAMOMETERS 8

Forces involved in machining mechanical – hydraulic and electrical dynamometers – amplifiers and recorders measurement of forces in drilling – dynamometer for milling – dampers for dynamometer.

### UNIT V ANALYSIS OF EXPERIMENT DATA

Parametric modeling of data – identification with extrapolation – Implicit parameters – Inverse theory for ill conditioned problems – regularization of forms – relocation of data into a grid pattern.

### TOTAL: 45 PERIODS

### TEXT BOOK

1. Venkatesh, V. C. and Chandrasekaran, A., "Experimental techniques in metal Cutting", Prentice Hall of India Pvt. Ltd., New Delhi, 1987.

### REFERENCES

- 1. Gardiner, W. P. and Gettingby, G, "Experimental Techniques in Statistical Practice", Horwood publishing Manchester – 1998.
- 2. Warren Richard DeVries, "Analysis of Materials Removal Processes", Springer, 1992



10

8

### EXPERIMENTAL STRESS ANALYSIS

### **OBJECTIVES**

ML3011

After studying stress and strain in the core mechanical subjects, this elective should train the students to apply practical methods of experimental stress analysis.

#### UNIT I INTRODUCTION

Basic Equations and plane elasticity theory – plane elastic problems - plane strain approach – plane stress – Airy's stress function – in cartesian co-ordinate. Two dimensional.

### UNIT II **BRITTLE COATING METHODS**

Coating stresses - Failure theories. Brittle coating crack patterns - direct load -Defrigeration Techniques. Brittle – coating crack patterns produced by releasing the load, double crack pattern – crack detection.

### UNIT III PHOTO ELASTICITY METHODS

Stress optic law in two dimensions at normal incidence - Effect of stress model in a plane polariscope - Circular polariscope (Dark field – light field) – Fringe multiplication by photographic methods. Holography

#### UNIT IV STRAIN MEASUREMENTS

Definition of strain and its relation to experimental determinations - Basic characteristic of strain gage - Moire method - Grid method of strain analysis. Electrical resistance strain gages, gage construction - temperature compensation gage sensitivities and cage factor - semi conductor strain gages - Delta rosette.

### UNIT V STRAIN GAGE CIRCUITS

Potentiometer and its applications to strain measurement - range and sensitivity of potentiometer circuit – Temperature compensation – Load effects on the potentiometer circuits – Wheat stone bridge – Null –balance bridge – Criteria for circuit selection.

### TOTAL: 45 PERIODS

### TEXT BOOK:

1. James W. Dally and Willan F. Riley, "Experimental Stress Analysis", 4th edition, College House Enterprise, 2005

### **REFERENCES:**

- 1. James F. Doyle, "Modern Experimental stress analysis: Completing the solution of partially specified problems", John Wiley and Sons Ltd., 2004.
- 2. Dally, Riley, and McConnell," Instrumentation for Engineering Measurements", Wiley & Sons. 1984
- 3. Wieringa, H., "Experimental Stress Analysis", Springer, 1986.

7

7

8

12

### ML3017 LASER PROCESSING OF MATERIALS

### OBJECTIVES

Students are to be trained in modern laser processing methods that include machining and cutting, but also a way of localized heat treatment not available with conventional ways of introducing heat in a metal.

#### UNIT I LASER SYSTEMS

Laser beam characteristics - laser principles - High power lasers for materials applications – principles and working of CO<sub>2</sub> Nd:YAG and Excimer laser – Optics for irradiation

#### UNIT II THERMAL PROCESS IN INTERACTION ZONES

Laser Materials processing parameters – conduction and convection – Analytical models in one dimensional heat flow - depth of irradiation with respect to energy density reflectivity of material with respect to wave length - rate of heating, cooling and temperature gradient.

#### UNIT III LASER METALLURGY

Laser surface treatment – transformation hardening - rapid quenching – Methods to obtain desired penetration depths - Laser surface alloying - Laser surface cladding shock hardening - advantages of laser surface treatment - industrial applications-Experimental set up.

#### UNIT IV LASER CUTTING AND DRILLING

Laser instrumentation for cutting and drilling - cut quality and process characteristics methods of cutting - practical performance - process variations - industrial applications of Laser cutting and drilling.

#### UNIT V LASER WELDING

Process mechanisms (Key hole and Plasmas) - operating characteristics - process variations - imperfections- industrial applications -recent developments

# TOTAL: 45 PERIODS

### **TEXT BOOK:**

1. Wilson J., Hawkes J. F. B., "Optoelectronics - An introduction", Prentice Hall of India Pvt. Ltd., New Delhi, 1996.

### **REFERENCES:**

- 1. John C. Ion, "Laser Processing of Engineering Materials", Elsevier Butter Worth-Heinemann, Burlington, 2005.
- 2. Steen W. M., "Laser Materials Processing", Springer Verlag, 3 rd edition U.K., 2003.
- 3. Rykalin, Ugloo A., Kokona A., "Laser and Electron Beam Material Processing", Handbook, MIR Publishers, 1987.
- 4. Reddy J. F., "High power laser applications", Academic Press, 1977.
- 5. Duley W. W., "Laser Processing and Analysis of Materials"; Plenum Press, New York, 1983.

9

9

9

9

### ML3018 CRYOGENIC TREATMENT OF MATERIALS

### OBJECTIVE

Students are to study and become familiar with this very specialized form of material treatment at low temperature.

#### UNIT I INTRODUCTION

Insight on Cryogenics-Basics, Properties of Cryogenic fluids, Liguefaction Cycles -Carnot Liquefaction Cycle, F.O.M. and Yield of Liquefaction Cycles. Inversion Curve -Joule Thomson Effect. Linde Hampson Cycle, Precooled Linde Hampson Cycle, Claude Cycle, Dual Cycle.

#### UNIT II CRYOCOOLERS

Cryocooler requirement- Space based communication, Surveillance Imaging, Military applications, Impact of regenerative materials on cooler performance, Impact of materials properties on cryocooler performance-Materials used, Thermal Properties, Electrical Properties, and Mechanical properties.

#### **CRYOGENIC PROCESSING** UNIT III

Historical Development of Cryogenic Treatment, Cryogenic for Ferrous Metals, Need for cryogenic treatment, Types of low temperature treatment and processors, Benefits of cryogenic treatment-Wear resistance, Stress Relieving, Mechanism for cryogenic treatment, Characterization of cryogenically processed materials.

#### UNIT IV MATERIALS ENGINEERING

Trends and advances in cryogenic materials, History and applications of nonmetallic materials, Understanding properties and fabrication processes of superconducting Nb<sub>3</sub>Sn wires, High temperature superconductors.

#### UNIT V **APPLICATIONS**

Applications of Cryogenics in Space Programs, Superconductivity, Medical applications, Food Preservation-Individual Quick Freezing.

## **TOTAL: 45 PERIODS**

# TEXT BOOK:

1. Randall F. Barron, "Cryogenic Systems", McGraw-Hill, 1985.

### **REFERENCES:**

- 1. William E. Bryson," Cryogenics", H Anser Gardner Publications, 1999.
- 2. Klaus D. Timmerhaus and Richard P. Reed," Cryogenic Engineering", Springer, 2007.
- 3. Scott R. B., "Cryogenic Engineering", Van Nostrand and Co., 1962.
- 4. Jha, A.R.," Cryogenic Technology and Applications", Butterworth-Heinemann, 2006



9

9

9

9

9

9

9

9

### AIM

This subject is expected to imbibe knowledge on materials handling system which are essential for industries ranging from heavy works to semiconductor devices manufacturing.

### OBJECTIVE

This course is practically oriented for the needs of industry. Students are to master materials handling systems for flow, transport and assembly operations in production lines.

### UNIT I PLANT LAYOUT AND MATERIAL HANDLING PRINCIPLE

Plant Layout: Need for layout planning, Layout objectives and Determinants, Types of Layout, Computer Aided Plant Layout Planning: CRAFT, ALDEP, and CORELAP.

Material Handling objective, benefits of better handling, relationship between layout and material handling, principles of Material Handling, Unit load concept, Material Handling Types, Equipment selection and Applications.

### UNIT II MECHANIZED ASSEMBLY

Principles and operating characteristics of part feeders such as vibratory bowl feeder, Reciprocating tube hopper feeder, Centrifugal hopper feeder, Center board hopper feeder, Orientation of parts : In bowl and out bowl tooling, different types of Escapement, Transfer Systems and Indexing Mechanism.

### UNIT III MATERIAL TRANSPORT AND STORAGE SYSTEM

Industrial trucks: non powered and powered industrial trucks, AGVS : Types, Vehicle guidance technology, traffic and safety, Monorail and other rail guided vehicles, types of cranes, hoists and elevators.

### UNIT IV CONVEYORS TYPES AND STORAGE SYSTEM

Belt conveyors, Slat conveyors, Gravity conveyors, Apron, escalators, pneumatic conveyors, screw conveyors, vibrating conveyor, Analysis of material transport system. Automated Storage system, AS/RS System, Carousel storage system, WIP storage system.

### UNIT V PACKAGING AND ECONOMIC ANALYSIS OF MATERIAL HANDLING EQUIPMENTS 9

Packaging: Functions, materials, palletizing, packaging equipments. Economic Analysis of material handling equipment: Factors in material handling selection, break event analysis, equipment operating cost per unit distance, work volume analysis – illustrative problems, productivity / indicator ratios.

### **TOTAL : 45 PERIODS**

### TEXT BOOKS

- 1. Jon R. Immer, "Material Handling", Mc-Graw Hill Company, 1950
- 2. Sharma, S. C., "Materials Management and Materials Handling " Khanna Publishers., 2004.
- 3. Dr.K.C.Arora, Vikas . V.Shinde,"Aspects of Materials Handling", Laxmi publishers, 2007.

### REFERENCES

1. K.H.E. Kroemer, Karl Kroemer,"Ergonomics Design for Materials Handling systems", CRC Press, 1997.

- 2. Raymond A.Kulwiec, "Materials handling Handbook", A Wiley Inderscience publication" 1984.
- 3. Apple, J. M.," Plant Layout and material handling system design", John Wiley & Sons, 1995.
- 4. Francis, L. R. and White J. A., "Facility Layout and Location: An analytical approach", Prentice Hall, Englewood Cliffs, N.J, 1998
- 5. Alexandrov, M. P., "Material Handling Equipment", MIR Publishers, Moscow, 1981.
- 6. Rudenko. N," Material Handling Equipment", MIR Publishers, 1981
- 7. Tompkins, J. and White, J. A., "Facilities Planning", John Wiley & Sons, 2000.

### ML3007 MODELING AND SIMULATION IN MATERIALS ENGINEERING

L T P C 3 0 0 3

### OBJECTIVES:

Modeling and simulation are important tools in understanding physical effects in many technological applications. This course should enable students to use standard packages for modeling and simulation applicable to Materials Science and Engineering.

### UNIT I INTRODUCTION TO MODELING AND MATHEMATICAL CONCEPTS 9

Mathematical modeling, physical simulation, advantages and limitations - Review of differential equations, numerical methods, introduction to FEM, FDM- Governing differential equations of elastic, plastic deformation, fluid flow and heat transfer – basic steps in FEM

### UNIT II CONSTITUTIVE MODELING

Elastic Medium, visco-elastic constitutive equations.

### UNIT III CONSTITUTIVE MODELING

Plastic Medium.

### UNIT IV SOFTWARE PACKAGES

Introduction to standard software packages – General purpose FEA packages such as ANSYS, ABAQUS, NASTRAN etc. – Special purpose packages such as DEFORM, OPTIFORM, ProCAST, etc. - Applications of FEA in simulation of sheet metal and bulk forming, solidification of casting and weldment, Concepts of coupled analysis

### UNIT V COMPUTER APPLICATIONS IN PHYSICAL METALLURGY

Use of computers for the construction of phase diagrams, Features of CALPHAD – Expert system for alloy design and selection of materials – computer applications in crystallography.

### **TOTAL : 45 PERIODS**

### TEXT BOOKS

- 1. Reddy J. N., "An Introduction to Finite Element Method", McGraw-Hill International Student Edition, 1985.
- 2. AMIE, "Modeling of casting and welding process", Volume I & II, the Metallurgical society of AMIE, 1981&1983.

9

9

9

### REFERENCES

- 1. Piwonoka T.S., Vollen V., Katgerman I., "Modeling of Casting, Welding, and Advanced Solidification Process", 4th edition, TMS-AIME, USA, 1993
- 2. Stocks G.M., Turchi P.E.A., "Alloy Modeling and Design", the Metals Society, AMIE, USA, 1994.
- 3. Trivedi R., Sekhar J.A., Majumudar J., "Principles of Solidification and Material Processing", Volume I&II, Oxford and IBH, New Delhi, 1989.
- 4. Cerjak H., "Mathematical Modeling of Weld Phenomenon-2", The Institute of Materials, 1995.
- 5. O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Methods, Vol.1. The basic formulation and linear problems", Vol. 1, Butterworth Heineman, 5th Edition, 2000.

### ML3023

### POLYMER RHEOLOGY

### LT P C 3 0 0 3

9

9

9

9

### OBJECTIVE

Students have studied the fundamentals of plastics from the point of structure and properties. In this course the rheological aspects of production should be understood in detail.

### UNIT I INTRODUCTION TO POLYMER RHEOLOGY

Rheology- Classification of fluid behaviour – Elastic , viscous and viscoelastic – Newtonian and non-newtonian fluids – Pseudo plastic and dilatant fluids – Stress, strain – Rate of strain/shear – Relation between them – Viscosity of Polymer Systems – MFI.

### UNIT II PRINCIPLES OF POLYMER RHEOLOGY

Rheological systems – Plasticity – Elastic behaviour – Stress strain curves – Viscoelastic behaviour of polymer melts – Bingham plastic fluids – Viscoplastic fluids – Thixotropic & Rheopectic – Viscoelastic fluids – Weissenberg effect – Die swell

### UNIT III FACTORS INFLUENCING POLYMER RHEOLOGY 9

Physical factors – Effect of Temperature – Pressure – Shear rate – Shear stress – Shear induced crystallization – Molecular Parameters – Molecular weight – MWD – Concentration – Crosslinking – Crystallinity – Copolymerization – Grafting – Branching-Blending -Fillers – Plasticizers – Ionic Polymers.

### UNIT IV RHEOMETRY AND TESTING METHODS

Rheological measurements – Capillary viscometer – Rotary rheometer – Cone & Plate (C-P), Plate-Plate (P-P) and concentric cylindrical viscometer – Static and Dynamic Tests – Mechanical models of viscoelastic systems – Maxwell & VOIGT Kelvin – Polymer Viscoelasticity.

### UNIT V RHEOLOGY IN PLASTICS AND RUBBER PROCESSING

Rheology of two roll mill & calendar – Internal mixer – Extrusion – Rubber extruders – Vented & Co-extrusion – Moulding & Forming operations – Injection, Compression, Blow, Film Blowing, Sheet Extrusion – Melt flow through dies – Die well – Melt fracture.

### TOTAL: 45 PERIODS

# SS TIE

## TEXT BOOK:

1. Norman E. Dowling," Mechanical Behavior of Materials", 2nd Edition, Prentice-Hall 1999.

# TEXT BOOK:

1. Gupta, B. K., "Applied Rheology in Polymer Processing", Asian Books Pvt. Ltd. New Delhi 2005.

### **REFERENCES**:

- 1. Faith A. Morrison," Understanding Rheology", Oxford University Press, 2001
- 2. Bird,R.B., Stewart,W.E. and Lightfoot, E. N. (BSL)," Transport Phenomena", John Wiley & Sons: New York, 1960.
- 3. Ferry, J.D., "Viscoelastic Properties of Polymers", John Wiley & Sons, Inc. New York, 1980.
- 4. Bird, R.B., Armstrong, R.C. and Hassager, O., "Dynamics of Polymer Liquids, Volume 1: Fluid Mechanics", Wiley: New York, 1987.

### ML3024 FRACTURE MECHANICS & FAILURE ANALYSIS LT P C 3 0 0 3

### OBJECTIVE

After completion of this course, students should have been understood causes of fracture and failure on the basis of fracture mechanics.

### UNIT I ELEMENTS OF SOLID MECHANICS

The geometry of stress and strain, elastic deformation, plastic and elasto-plastic deformation - limit analysis.

### UNIT II STATIONARY CRACK UNDER STATIC LOADING

Two dimensional elastic fields – Analytical solutions yielding near a crack front – Irwin's approximation - plastic zone size – Dugdaale model – J integral and its relation to crack opening displacement.

### UNIT III ENERGY BALANCE AND CRACK GROWTH

Griffith analysis – Linear Fracture Mechanics-Crack Opening displacement – Dynamic energy balance – crack arrest.

### UNIT IV FATIGUE CRACK GROWTH CURVE

Empirical Relation describing crack growth by fatigue – Life calculations for a given load amplitude – effects of changing the load spectrum – Effects of Environment.

### UNIT V ELEMENTS OF APPLIED FRACTURE MECHANICS

Examples of crack-growth Analysis for cyclic loading - leak before break – crack Initiation under large scale yielding – Thickness as a Design parameter – crack instability in Thermal or Residual – stress fields.

### TOTAL: 45 PERIODS

5

10

8

10

### **REFERENCES:**

- 1. David Broek, "Elementary Engineering Fracture Mechanics", Fifthoff and Noerdhoff International Publisher, 1978.
- 2. Kare Hellan, "Introduction of Fracture Mechanics", McGraw-Hill Book Company, 1985.
- 3. Preshant Kumar, "Elements of Fracture Mechanics", Wheeler Publishing, 1999.
- 4. Suresh, S., "Fatigue of Materials", Cambridge University Press, 2 nd edition, 1998.
- 5. Ashok Saxena," Nonlinear Fracture Mechanics for Engineers", CRC Press, 1998.
- 6. Schive, Jaap, "Fatigue of Structures and Materials", Kluwer Academic Publishers, 2001.

### ME2032 COMPUTATIONAL FLUID DYNAMICS

LTPC 3003

9

9

### AIM

To impart the knowledge of numerical techniques to the solution of fluid dynamics and heat transfer problems.

### OBJECTIVES

- To introduce Governing Equations of vicous fluid flows
- To introduce numerical modeling and its role in the field of fluid flow and heat transfer
- To enable the students to understand the various discretization methods, solution procedures and turbulence modeling.
- To create confidence to solve complex problems in the field of fluid flow and heat transfer by using high speed computers.

### PREREQUISITE:

Fundamental Knowledge of partial differential equations, Heat Transfer and Fluid Mechanics

### UNIT I GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 8

Basics of computational fluid dynamics – Governing equations of fluid dynamics – Continuity, Momentum and Energy equations – Chemical species transport – Physical boundary conditions – Time-averaged equations for Turbulent Flow – Turbulent–Kinetic Energy Equations – Mathematical behaviour of PDEs on CFD - Elliptic, Parabolic and Hyperbolic equations.

### UNIT II FINITE DIFFERENCE METHOD

Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy – solution methods for finite difference equations – Elliptic equations – Iterative solution Methods – Parabolic equations – Explicit and Implicit schemes – Example problems on elliptic and parabolic equations.

### UNIT III FINITE VOLUME METHOD (FVM) FOR DIFFUSION

Finite volume formulation for steady state One, Two and Three -dimensional diffusion problems. One dimensional unsteady heat conduction through Explicit, Crank – Nicolson and fully implicit schemes.

## UNIT IV FINITE VOLUME METHOD FOR CONVECTION DIFFUSION

Steady one-dimensional convection and diffusion – Central, upwind differencing schemes-properties of discretization schemes – Conservativeness, Boundedness, Trasnportiveness, Hybrid, Power-law, QUICK Schemes.

### UNIT V CALCULATION FLOW FIELD BY FVM

Representation of the pressure gradient term and continuity equation – Staggered grid – Momentum equations – Pressure and Velocity corrections – Pressure Correction equation, SIMPLE algorithm and its variants. Turbulence models, mixing length model, Two equation (k- $\varepsilon$ ) models – High and low Reynolds number models.

### **TOTAL : 45 PERIODS**

### TEXT BOOKS:

- 1. T. J. Chung, Computational Fluid Dynamics, Cambridge University, Press, 2002.
- 2. Versteeg, H. K., and Malalasekera, W., An Introduction to Computational Fluid Dynamics: The finite volume Method, Longman, 1998.
- 3. Ghoshdastidar, P. S., Computer simulation of flow and heat transfer, Tata McGraw Hill Publishing Company Ltd., 1998.

### **REFERENCES:**

- 1. Patankar, S.V. Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 2004.
- 2. Muralidhar, K., and Sundararajan, T., computationsl Fluid Flow and Heat Transfer, Narosa Publishing House, NewDelhi, 1995.
- 3. Ghoshdastidar P.S., Heat Transfer, Oxford Unversity Press, 2005.
- 4. Prodip Niyogi, Chakrabarty .S.K., Laha .M.K. Introduction to Computational Fluid Dynamics, Pearson Education, 2005.
- 5. Introduction to Computational Fluid Dynamics Anil W. Date Cambridge University Press, 2005.

### I E 3401

### DESIGN OF EXPERIMENTS

### OBJECTIVES

To impart knowledge on statistical tools for industrial experimentation related to selection of product and process parameters in various environments.

### UNIT I CONCEPTS AND TERMINOLOGY

Review of hypothesis testing – P Value, "t" Vs paired "t" test, simple comparative experiment, planning of experiment – steps. Terminology - factors, levels, variables, Design principles – replication, randomization, blocking, confounding, Analysis of variance, sum of squares, degrees of freedom.

### UNIT II SINGLE FACTOR EXPERIMENTS

Completely randomized design, Randomized block design, effect of coding the observations, Latin Square design, orthogonal contrasts, comparison of treatment means – Duncan's multiple range test, Newman- Keuel's test, Fisher's LSD test, Tukey's test.

### UNIT III FACTORIAL EXPERIMENTS

Main and interaction effects, Rules for sum of squares and expected mean square, two and three factor full factorial design, 2k designs with two and three factors, Yate's algorithm, practical applications.

LTPC 3 1 0 4

10

9

5

10

### UNIT IV SPECIAL EXPERIMENTAL DESIGNS

Blocking and confounding in 2k design, nested design, split – plot design, two level fractional factorial design, fitting regression models, introduction to response surface methods.

### UNIT V TAGUCHI TECHNIQUES

Introduction, Orthogonal designs, data analysis using ANOVA and response graph, parameter design – noise factors, objective functions (S/N ratios), multi-level factor OA designs, applications.

### TOTAL : 45 +15 = 60 PERIODS

10

10

### TEXT BOOK:

1. Douglus C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2005

### **REFERENCES**:

- 1. Angela M. Dean and Daniel Voss, Design and Analysis of Experiments, Springer texts in Statistics, 2000.
- 2. Philip J. Ross, Taguchi Techniques for Quality Engineering, Prentice Hall, 1989.